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Abstract. A typical problem of Direct Contact Condensation (DCC) occurs at the liquid 

oxygen (LOX) booster turbopump exit of oxidiser rich staged combustion cycle based semi-

cryogenic rocket engines, where the hot gas mixture (predominantly oxygen and small amounts 

of combustion products) that runs the turbine mixes with LOX from the pump exit. This 

complex multiphase phenomena leads to the formation of solid CO2 & H2O, which is 

undesirable for the functioning of the main LOX turbopump. As a starting point for solving 

this complex problem, in this study, the hot gas mixture is taken as pure oxygen and hence, 

DCC of pure oxygen vapour jets in subcooled liquid oxygen is simulated using the commercial 

CFD package ANSYS CFX®. A two fluid model along with the thermal phase change model is 

employed for capturing the heat and mass transfer effects. The study mainly focuses on the 

subsonic DCC bubbling regime, which is reported as unstable with bubble formation, 

elongation, necking and collapsing effects. The heat transfer coefficients over a period of time 

have been computed and the various stages of bubbling have been analysed with the help of 

vapour volume fraction and pressure profiles. The results obtained for DCC of oxygen vapour-

liquid mixtures is in qualitative agreement with the experimental results on DCC of steam-

water mixtures. 

1. Introduction 

To obtain high engine specific impulse, staged combustion cycle based rocket engines were developed 

where the outlet gas from the turbine of turbopump assembly undergoes combustion in the main 

combustion chamber instead of being vented out as in the gas generator cycle [1]. In a typical semi-

cryogenic rocket engine working on staged combustion cycle, the booster turbine is run by the oxidiser 

rich combustion products from the pre-burner, which then mixes with LOX at the booster pump outlet 

[2]. This leads to a complex direct contact condensation problem with heat transfer and phase change, 

including solidification of the combustion products CO2 & H2O. The size of the solid contaminants 

entering the main turbopump should be small enough, so that it does not affect the structural integrity 

of the main pump blades. In contrast, the entire gas should be converted to liquid as the main pump is 

designed for handling incompressible fluids. So, the design of this direct contact condenser is an 

optimisation problem where the heat and mass transfer characteristics should not be so intense that the 

size of solid contaminants are outside the safety operational limits and at the same time, it should be 
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high enough to convert the entire gas into liquid. The goal of this paper is to obtain the overall heat 

and mass transfer characteristics when pure oxygen vapour jets/plumes condense in a pool of 

subcooled liquid oxygen, which provides an initial understanding to solve the original complex heat 

and mass transfer direct contact condensation problem. 

 

2. Literature Review 

DCC has been the focus of many researchers due to its application in Emergency Core Cooling 

(ECC’s) systems of nuclear reactors, underwater propulsion systems, cooling towers, contact feed 

water heaters etc. [3]. The advantage of direct contact heat transfer equipment is its high efficiency 

and lower cost [4]. In the open literature, there are no works reported on DCC of oxygen gas jets in 

liquid oxygen and hence, literature review focuses mainly on the DCC of steam jets in subcooled 

water. The DCC of steam jets in subcooled water can be categorised as chugging, bubbling and jetting 

regimes based on steam mass flux [5]. Chan et al. [6] studied the unstable steam chugging regimes 

which occurs at very low mass fluxes, where water enters the steam pipe. This will give rise to 

pressure oscillations of very high amplitude that can create problems to the structure of the containing 

vessel. However, Simpson et al. [7] studied unstable DCC of steam jets at relatively higher subsonic 

speeds giving rise to bubble oscillation regimes consisting of the bubble formation, elongation, 

necking and collapsing stages. The necking effects give rise to pressure spikes of amplitude 

comparatively smaller than the steam chugging regimes [6]. Steam jetting regimes occur at choked 

nozzle conditions and gives rise to stable condensation regime [8]. In this paper, the focus is on DCC 

bubbling regimes whereas the chugging and jetting regimes will be studied in the future. 

Numerical studies emerged as a powerful tool for analysing DCC in the past decade. Some of the 

pioneering works were done by Gulawani et al., [9] [10] and Dahikar et al., [11] on DCC of sonic 

steam jets in subcooled water. A two-fluid multiphase formulation with thermal phase change model 

was opted for these studies and the simulations were carried out on the commercial CFD package 

ANSYS CFX®. They obtained fairly good agreement between the experimental and numerical 

investigations. Shah et al., [12] studied the DCC of supersonic steam jets in subcooled water using the 

commercial CFD package ANSYS Fluent®. In conjunction with the previous works, they have also 

used a two-fluid formulation with thermal phase change model for capturing the condensation effects. 

Thiele [13] used an open source CFD software OpenFOAM® to study the DCC phenomena using a 

VOF based multiphase formulation to capture the flow physics, but the code has not been validated 

with experimental data. 

Based on the literature review, a two-fluid multiphase modelling approach with thermal phase 

change model was chosen for the present analysis. The details of the governing equations for the two-

fluid model is available in section 3.2.  

 

3. Numerical model 

3.1. Geometry and boundary conditions 

The geometry for the present study is taken from the case of Simpson et al. [7], where experimental 

studies on unstable DCC of steam jets in subcooled water has been performed. The selection of the 

geometry will help in future comparative studies and also for developing an experimental set-up for 

the oxygen vapour-liquid DCC studies. The dimensions of the given geometry are as shown in figure 

1, where the vapour enters the tank through a cylindrical nozzle. It has been reported that the tank wall 

effects on the jet behaviour are negligible [7]. Hence, the tank dimensions are reduced and opening 

boundary condition is imposed on the reduced tank walls to take care of surrounding liquid effects. 

The mass flux at the boundary condition is computed to ensure a DCC bubbling regime. Oxygen 

vapour at saturated condition enters through the nozzle and the initial conditions inside the tank is kept 

as subcooled liquid oxygen at atmospheric pressure. The details of the boundary conditions are as 

shown in table 1. 
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           All dimensions are in cm 

  Figure 1. Geometry with dimensions. 

3.2. Governing equations 

A two-fluid multiphase formulation discretised using a finite-volume method has been chosen for the 

present analysis. A particle based multiphase model has been adopted for carrying out the simulations, 

where the interfacial area is calculated as, 

𝐴12 =  
6𝛼2

𝑑2
                                                                        (1) 

The mean bubble diameter d2 is obtained from the correlation by Anglart et al. [14], which is one of 

the most accepted correlations for subcooled boiling heat transfer applications. Moreover, this 

correlation proves to be a very good approximation for DCC cases as reported by Shah et al. [12]. 

The volume averaged-governing equations for the prescribed model are as follows, 

3.2.1. Mass conservation. The continuity equation for both phases can be written as, 

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘) +  𝛻. (𝛼𝑘𝜌𝑘𝑼𝒌) =  𝑆𝑘,𝑐 +  ∑ Γ12

2
𝑘=1                                           (2) 

The two terms on the LHS refer to the unsteady and convective effects respectively. The first term on 

the RHS denotes the mass source term in the continuity equation which, in the present case is zero. 

The second term on the RHS indicates the mass source term due to phase change, the value of which is 

to be found out from the phase change model described in section 3.2.6.  

Table 1. Boundary conditions. 

 Value 

Nozzle inlet mass 

flow rate (kg/s) 
0.0051 

Nozzle inlet 

temperature (K) 
90.15 

Liquid 

temperature (K) 
65.15 

Tank pressure 

(MPa) 
0.1 
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3.2.2. Momentum conservation. Separate momentum equations are solved for both the phases as, 

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘𝑼𝒌) +  𝛻. (𝛼𝑘(𝜌𝑘𝑼𝒌⨂𝑼𝒌)) =  −𝛼𝑘 𝛻𝑝𝑘 +  𝛻. (𝛼𝑘𝜇𝑘(𝛻𝑼𝒌 + (𝛻𝑼𝒌)𝑇)) + 

∑ (Γ12
+ 𝑼𝟐 − Γ21

+ 𝑼𝟏) + 𝑆𝑘,𝑚 + 𝑀12
𝐷  2

𝑘=1                                                 (3) 

The two terms on the LHS denote the unsteady and convective effects respectively. The first two 

terms on the RHS indicate the pressure gradient and shear stress effects respectively. The third term on 

the RHS refers to the momentum changes due to phase change. Sk,m refers to the momentum source 

term which is zero for the case under study. The last term on the RHS takes account of the drag effects 

which is predicted by one of the most general and validated models by Schiller and Naumann [15] 

given as, 

𝐶𝐷 =  
24

𝑅𝑒
(1 + 0.15𝑅𝑒0.687)                                                        (4) 

The term CD refers to the drag coefficient and Re is the particle Reynolds number. 

3.2.3. Energy conservation. Conservation equation for energy written in terms of the total enthalpy for 

both phases is given as,  

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘ℎ𝑘,𝑡𝑜𝑡) − 𝛼𝑘

𝜕𝑝

𝜕𝑡
+  𝛻. (𝛼𝑘𝜌𝑘𝑼𝒌ℎ𝑘,𝑡𝑜𝑡) = ∇. (𝛼𝑘𝜆𝑘𝛻𝑇𝑘) +  𝛼𝑘𝛻. (𝑼𝒌. τ𝑘) + 𝑆𝑘,𝑒 + 𝑄𝑘 +

  ∑ (Γ12
+ ℎ2𝑠,𝑡𝑜𝑡 − Γ21

+ ℎ1𝑠,𝑡𝑜𝑡) 2
𝑘=1                                                      (5) 

The terms on LHS denote the unsteady and convective effects. The first term on the RHS denotes 

the conduction heat transfer term where λk is the thermal conductivity of the kth phase. The second 

term on the RHS denotes the energy changes due to shear stress. Sk,e denotes the energy source term 

which is again zero, as in the case of mass and momentum conservation. Qk represents the interphase 

heat transfer from the other phase to the kth phase. The last term on the RHS denotes the energy 

changes due to phase change which is calculated as discussed in section 3.2.6. 

3.2.4. Volume constraint. The total volume fraction of the two phases should account to unity and the 

constraint is given as, 

∑ 𝛼𝑘
2
𝑘=1 = 1                                                                    (6) 

3.2.5. Pressure constraint. Both the phases are assumed to share the same pressure field by assuming 

instantaneous microscopic pressure equilibrium [16] as, 

𝑝𝑘 = 𝑝 for k = 1, 2                                                               (7) 

Shared pressure assumption is a commonly adopted assumption in reported works [9] [10] [11] 

[12] on DCC of steam-water mixtures. 

3.2.6. Thermal phase change model. To model phase change, a heat transfer model along with a 

simple heat balance based on saturation temperature has been adopted, which is known as the 

“Thermal phase change” model. A two resistance model has been adopted for the present case, where 

the heat transfer on both phases are modelled as, 

𝑞1 =  ℎ1(𝑇𝑠 − 𝑇1)                                                                (8) 

𝑞2 =  ℎ2(𝑇𝑠 − 𝑇2)                                                                (9) 

The terms h1 and h2 are the heat transfer coefficients on the liquid and vapour side respectively. A 

zero equation model is used to model the heat transfer effects on the vapour side so that the vapour is 
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brought to saturation conditions at the interface. The heat transfer on the liquid side is modelled using 

the commonly adopted Ranz-Marshall model [17] as, 

𝑁𝑢 = 2 + 0.6𝑅𝑒0.6𝑃𝑟0.3                                                          (10) 

Using a simple heat balance to estimate the amount of mass transfer due to phase change as, 

𝑚̇21 =
(𝑞1+𝑞2)

(ℎ2𝑠−ℎ1𝑠)
                                                                (11) 

3.2.7. Turbulence model. A standard k-ε turbulence model has been used to model turbulence 

characteristics in the liquid phase. The transport equations for turbulent kinetic energy ‘k’ and 

turbulent dissipation rate ‘ε’ are given as, 

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘𝑘𝑘) + ∇. [𝛼𝑘 (𝜌𝑘𝑈𝑘𝑘𝑘 − (𝜇 + 

𝜇𝑡𝑘

𝜎𝑘
) ∇𝑘𝑘)] =  𝛼𝑘(𝑃𝑘 −  𝜌𝑘𝜀𝑘) + 𝛤12(𝑘)              (12) 

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘𝜀𝑘) +  ∇. [𝛼𝑘 (𝜌𝑘𝑈𝑘𝜀𝑘 − (𝜇 + 

𝜇𝑡𝑘

𝜎𝜀
) ∇𝜀𝑘)] =  𝛼𝑘

𝜀𝑘

𝑘𝑘
(𝐶𝜀1𝑃𝑘 −  𝐶𝜀2𝜌𝑘𝜀𝑘) +  𝛤12(𝜀)     (13) 

Γ12 (k) & Γ12 (ε) are the interphase transfer terms for k and ε respectively. The turbulent viscosity 

for the liquid phase ‘μt1’ is calculated as, 

𝜇𝑡1 =  𝑐𝜇𝜌1 (
𝑘1

2

𝜀1
)                                                                (14) 

Cμ, Cε1, Cε2, σk, σε are the various constants in turbulence modelling. Turbulence on the vapour side 

is modelled using the dispersed phase zero equation model [18] as, 

𝜇𝑡2 =  
𝜌2

𝜌1
 
𝜇𝑡1

𝜎
                                                                     (15) 

3.3. Solution methodology  

A coupled solver is used where an element based finite volume discretisation method has been 

adopted. The advection and turbulence terms were solved by a first order upwind scheme whereas the 

unsteady terms are solved using a first order backward Euler scheme. The selection of first order 

schemes for the present analysis is to avoid the stability issues associated with higher order schemes. 

Initially, steady simulations are performed until the residuals attain a steady state and the results thus 

generated are given as the initial condition for unsteady simulations. A time step size of 10-4 s has been 

chosen since the necking and collapsing phenomena occurs within fractions of a millisecond [7].  

 

4. Results and Discussion 

4.1. Grid independence study 

To avoid errors due to coarse mesh sizes, a grid independence study was carried out. A blocked 

structured approach has been used to generate the grid using ICEM CFD®. Heat transfer coefficients at 

every time step are calculated and the averaged value over the entire time period is taken for the 

purpose of comparison. The various grids used for the test and the results of the grid independence 

study are as shown in table 2. The values of heat transfer coefficients at different grid sizes are also 

plotted as shown in figure 2. From the study, it can be inferred that case 3 and case 4 gives close 

enough results. So, to save computational time, case 3 has been taken as the optimum grid for further 

simulations. 
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           Figure 2. Grid independence study. 

4.2. Bubbling stages and heat transfer characteristics 

The heat transfer characteristics of unstable DCC phenomena vary rapidly with the bubbling stages as 

shown in figure 3. The values of heat transfer coefficient are plotted for time period between 20 ms to 

100 ms. While plotting the results, 0-20 ms is considered as the initial transients in the process of 

steady to unsteady transition and hence, the results after 20 ms is of importance to the designer. 

 

Figure 3. Variation of heat transfer coefficient with time. 

It can be observed that the heat transfer coefficients are in the range of 6.5-9.5 W/cm2K, which are 

much higher compared to the typical film condensation heat transfer coefficients of oxygen, which are 

in the range of 0.3-0.8 W/cm2K [19]. A typical cycle of bubbling regime for a time period of 30 ms – 

37 ms is taken for understanding the detailed flow physics and heat transfer characteristics.  

 

Table 2. Grid independence test. 

Cases 

Total 

number of 
nodes 

Heat transfer 

coefficient 
(W/cm2K) 

Absolute 
percentage 

deviation 

(%) 

Case 1 1, 70, 828 8.75 - 

Case 2 6, 74, 574 2.51 71.31 

Case 3 12, 57, 324 2.04 18.73 

Case 4 21, 54, 903 1.96 3.92 
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Figure 4. CFD results of plume shapes for a typical cycle of 30 ms – 37 ms. 

 

Figure 5. Heat transfer coefficients for a typical cycle of 30 ms – 37 ms. 

It can be inferred from figure 4 and figure 5 that the heat transfer coefficient reaches a maximum 

during the necking stage and gradually decreases during the collapsing and elongation stages. It is due 

to the fact that the interfacial area decreases during the necking stage and hence, to maintain the same 

heat transfer rate, the heat transfer coefficient increases as given by the energy balance equation [7] 

[8]. Though interfacial area decreases during the collapsing stage, the bubble elongation stage initiates 

simultaneously supressing the effect of interfacial area reduction due to collapsing. Hence, there is a 

decrease in heat transfer coefficient during the collapsing and elongation stages. These results are in 

qualitative agreement with the experimental results for steam-water DCC obtained by Simpson et al., 

[7]. The cycle repeats itself as the time advances, though the successive cycles may not be 

quantitatively similar. So, a statistical averaging over a large enough time history is required to obtain 

the heat transfer characteristics for the purpose of designing an oxygen vapour-liquid direct contact 

condenser. 

4.3. Pressure oscillation studies 

The values of pressure at an arbitrary point in the tank at a distance of 2.5 cm radial to the nozzle 

outlet is plotted as shown in figure 6.  

 30 ms           31 ms            32 ms           33 ms          34 ms          35 ms           36 ms         37ms 
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Figure 6. Pressure values for a typical cycle of 30 ms – 37 ms. 

The pressure values show unstable oscillations and it can be observed that the peak to peak 

pressure amplitude is maximum during the necking stage. The interfacial area change is rapid during 

the necking stage which in turn gives rise to pressure oscillations of higher amplitudes. This is in 

agreement with the pressure spikes obtained for unstable DCC of steam-water mixtures [7]. The 

maximum peak to peak pressure amplitude observed is around 2-3 kPa which is much lower compared 

to the values of 20-40 kPa for steam chugging regimes [6]. So, it can be inferred that DCC bubbling 

regime may not provide a treat to the structural integrity of the condenser as compared to the DCC 

chugging regimes. 

 

5. Conclusion 

A two-fluid multiphase formulation with thermal phase change model has been employed to capture 

the DCC bubbling phenomena in oxygen vapour-liquid mixtures. It has been observed that DCC 

condensation provides a heat transfer coefficient of approximately 10 times higher than the typical 

film condensation heat transfer coefficient for oxygen. The various stages of bubbling such as 

elongation, necking and collapsing was observed with the help of vapour volume fraction profiles. It 

has been found that the heat transfer coefficient is maximum during the necking stage for oxygen 

vapour-liquid mixture which is also the case for reported works on steam-water mixtures. Pressure 

oscillations induced by bubbling was studied and it has been identified that peak to peak pressure 

oscillation amplitude is maximum at the necking stage. But, these peak to peak amplitudes are much 

lower compared to the DCC chugging regimes and hence can be considered comparatively safe from a 

structural design point of view. Further, a detailed quantitative assessment of heat transfer and 

pressure oscillation characteristics is necessary to develop a methodology for the design of oxygen 

vapour-liquid direct contact condenser. 
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                                                                List of symbols                                                                   

α – volume fraction 

A – area, m2 

d – diameter, m 

ρ – density, kg/m3 

U – velocity vector, m/s 

S – source term 

Γ – interphase transfer term, kg/m3s 

t – time, s 

p – pressure, N/m2 

μ – viscosity, kg/ms 

h – enthalpy, J/kg 

λ – thermal conductivity, W/mK 

τ – shear stress. N/m2 

 

k – turbulent kinetic energy, m2/s2 

ε – turbulent energy dissipation rate, m2/s3 

σ – turbulent Prandtl number 

Subscripts 

k – phase 

1 – liquid phase 

2 – vapour phase  

tot – total 

s – saturation 

tk – turbulence term of kth phase 

Superscripts  

+ - positive mass flow rate 

D – drag force 
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