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Abstract. Managing the cryogenic flows inside a state-of-the-art accelerator cryomodule has 

become a demanding endeavour: In order to build highly efficient modules, all heat transfers 

are usually intercepted at various temperatures. For a multi-cavity module, operated at 1.8 K, 

this requires intercepts at 4 K and at 80 K at different locations with sometimes strongly 

varying heat loads which for simplicity reasons are operated in parallel. This contribution will 

describe an analytical approach, based on optimization theories. 

1.  Introduction 

The design of efficient cryo-modules usually demands cooling of many intercepts, and even the heat 

loads itself are sometimes at different temperatures. In the Cornell ERL main linac cryo-module 

(MLC) for example, the main heat load is at 1.8 K – which are the SRF cavities[1]. Nevertheless, there 

is also an 80 K heat load being the higher order mode (HOM) absorbers. Besides that, intercept 

cooling is provided for all couplers at 80 K and at 5 K, and a 5 K cooling is also provided to the 

beamline flanges at the HOM absorber. Similar cooling requirements can be found at the LCLS-II 

cryomodule[2]. 

During the design phase of the cryogenic cooling arrangement an important design choice has to be 

made: Do these heat loads have to be intercepted by an active cooling channel with a coolant stream or 

is a passive cooling provided by straps sufficient? 

For smaller heat loads a passive cooling is usually chosen. In this arrangement, the coolant flows 

through a rather large channel while the intercepts are cooled passively by straps and heat conduction. 

As a matter of fact, temperatures at the intercept can be significantly higher than the temperature at the 

coolant. As an example, the LCLS-II cryo-module power coupler is cooled passively. With an 

expected heat load of 20 W the intercept will operate at 120 K even though the cooling is provided by 

an 80 K gas stream, indicating a temperature gradient along the cooling strap of 40 K [3]. 

Above certain heat loads, conductive cooling becomes unfeasible (in terms of having a short path 

and a large cross-sections). For the Cornell injector cryomodule (ICM), where the expected heat load 

on the power couplers was 75 W at 80 K, active cooling was chosen. In this arrangement, the coolant 

flows directly to the intercept guaranteeing a minimum temperature gradient[4].  

If cooling is required at several intercept, the question arises whether to cool them in series or in 

parallel. A serial cooling is easy to design but as a consequence of the individual heating applied, 

temperature of the intercepts will increase along the flow path. In contrast, parallel cooling allows 

uniform temperatures at all intercepts but designing the manifold such that every stream gets an 

appropriate mass flow is quite demanding for several reasons. Firstly, pipe diameters and lengths have 

to been chosen carefully and it has to made sure that a change in one cooling channel is correctly 

ICECICMC                                                                                                                                          IOP Publishing
IOP Conf. Series: Materials Science and Engineering 171 (2017) 012035    doi:10.1088/1757-899X/171/1/012035

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
1



 

 

 

 

 

compensated by and adequate change in the parallel flow. Secondly, parallel flows are highly 

susceptible to become unbalanced. This phenomena, commonly know as “the coldest stream starves 

the warmers” is a result of the fact that the effective fluid impedance of a channel is a function of the 

fluid parameters itself and higher temperatures of the fluid lead to a higher impedance of a channel. 

This effect becomes an issue, if heat loads are not well known – like in a prototype- or if the heat loads 

are of statistical character – like the heating from higher order modes. 

For these reasons, there seems to be a great reluctance to use parallel flows for intercept cooling. At 

Cornell, throughout the design of several cryomodule with parallel flows, we developed a tool-box of 

design aids, starting from simple spread sheet to dynamics simulators that allow simulation of 

transients [5,6]. Part of that effort was driven by the fact that the 80 K heat loads of our ICM where 

quite different from the expected, some design changes in the HOM absorbers cooling where not 

compensated by accompanying modification in the parallel circuit. 

This paper introduces a different approach: instead of calculating the fluid dynamics step-wise 

using database values for the coolant properties I will describe an approach based on the mathematical 

theory to optimization, developed by Lagrange as well as Kuhn and Tucker. I will show that this 

approach will result in an analytical solution of the parallel flow characteristics.   

2.  Background 

Let’s assume a simplified parallel flow circuit as given in figure 1. Let it consist of two parallel 

streams of Helium (! " #$%& with two independent heat loads'() on each branch. Let’s assume the 

instream of the helium is at a given temperature *)+ and pressure ,)+ that the mass-flow is a controlled 

and known quantity -./.. The dimensions of each flow channel is given its length 0) and its hydraulic 

diameter 1). 

 

Figure 1. Simplified model of a parallel flow circuit 

 

As a result of the coolant flowing through the channels there will be a decrease in the pressure 

which is given by the Darcy-Weisbach equation  

 

2,) "
3)0)4)5)

6

%1)
 (1) 

 

which not only includes the properties of the geometry but also quantities characterizing the fluid like 

the density 4) and the friction factor 3 (being eventually correlated with the Reynolds number) 

definitions of which are given in text books (for example [7] or [8]). Some parameters are given by the 

mechanical layout (like 1) and'0)), while others are fluid properties (4, 7) and are usually taken from 

databases like HEPAK [7], based in the inlet parameters ,)+ and *)+. For complex geometries or in 

situations where * (because of the heat load () and , (as a result of the pressure drop from the 

preceding piping) are not constant, pressure drops have to be calculated stepwise following eqn. (1). 
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Eventually, the mass flows - and thus the fluid velocities 5 are a result of the condition that the 

pressure drop along each parallel path has to be equal. In our case the guiding condition is 

 

2,8 " 2,6. (2) 

 

For the calculations described [5] and [6] complex tables where used and the condition of eqn. (4) 

was fulfilled by adjusting the massflow - manually (as done in [5]) or by using scripting and seek 

function techniques as done in [6]. Even though solutions have been found, the method is basically a 

numerical iteration. However, eqn. 2 can be transformed into a minimization problem 

'-!9 2,8 : 2,6
6 , which seem to be a strange approach, but allows an analytical solution using 

well know optimization conditions described in the section below. 

3.  An analytical approach based on optimization theories 

3.1.  Motivation 

In classical mechanical system the dynamics is well described by Newton’s laws of motion. Applying 

these laws under boundary conditions, for example on a roller coaster, where the motion is constrained 

by the rails however can be quite demanding. In these cases, the Lagrangian approach to the classical 

motion has found to be more adequate. Here, the equation of motion can are derived by determining 

the Lagrangian multipliers that correspond to the optimization problem -;< * : = , where * is the 

kinetic and = the potential energy of the system. 

3.2.  Lagrange Form 

Analogue to the mechanical example, flow rates of the parallel channels are such that the pressure 

decrease in both channels are equal. This transforms into this optimization problem  

 

-;< : 2,8 : 2,6
6  (3) 

 

under the boundary conditions of 

 

-8 > -6 " -./.. (4) 

 

Additional constraints might be given (maybe () to have a certain value). The Lagrangian function 

is then given by: 

 

? " : @,8 : @,6
6' : A -8 > -6 : -./. . (5) 

 

According to the Lagrangian theory, the optimum solution can be derived by solving this set of 

equations: B? " C, which explicitly written is 

 
D?

D-8

" C$
D?

D-6

" C$
D?

DA
" C' (6) 

 

This set of 3 equations allows calculating the fluid dynamics with 3 free parameters. Sometimes, 

more than 3 free parameters exists which means the designer has to make a reasonable choice, or add 

more conditions to constrain the problem. 

So far, the optimization uses boundary conditions which have to be exactly fulfilled- but this 

limitation can be overcome by the method described next.  
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3.3.  Kuhn-Tucker condition 

If the boundary conditions are more complex, the problem becomes a nonlinear optimization, which 

can be handled by the Kuhn-Tucker conditions. Let’s assume we still want to maximize  

  

: @,8 : @,6
6 E FG@,8$ @,6&$' (7) 

 

which we will call function F for convenience reasons. In contrast to the Lagrangian situation, the 

boundary conditions are now non-linear or of relation type. A typical design constrain is for example 

that the overall mass is not to exceed a certain value, or that the temperature increase at an heat load 

intercept has to be smaller than an allowable figure:  

 

-8 > -6 H -./. $ @*8 H %CI$ '@*6 H JCI' (8) 

On an abstract level, the boundary conditions are described by a set of relations given by K) L M). The 

Lagrangian function is then given by 

 

? " : @,8 : @,6
6' : A8 -8 > -6 : -./. : 'A6G@*8 : %CI&':ANG@*6 : JCI&O' (9) 

 

In this case now, the optimum solution is not only given by the Lagrangian multipliers (which would 

only be true if all boundary conditions are binding), but would also solve the three Kuhn-Tucker 

conditions. The first Kuhn-Tucker condition is described by this set of equations, where the number of 

equations is equal to the free parameters in eqn. 7: 

 
P3

P@,8
: A8

PK8

P@,8
QAN

PKN

P@,8
" C'

P3

P@,6
: A8

PK8

P@,6
QAN

PKN

P@,6
" C'

(10) 

 

The second Kuhn-Tucker condition ensures that the Lagrangien multipliers gained from eqn. 9 

describe a valid solution: 

 

A8 R C$ A6 R C'STU'AN R C' (11) 

 

While in Lagrangian problems all multipliers A) are greater than 0, boundary conditions of the type 

described by eqn. (8) can lead to multipliers being 0.  

Eventually, the third Kuhn-Tucker condition, described by 

 

K8 H M8$ K6 H M6 STU'KN H MN R C$' (12) 

 

allows the distinction between binding boundary conditions and non-binding conditions. If K) " M), the 

condition is binding which means it restricts the optimization. Increasing M) can than lead to a better 

solution. In the case of  K) L M) the boundary condition is called non binding. 

It should be noted, that a mixed problem, defined by boundary conditions of the type 

 

K) H M) $ VW " XW ' (13) 

 

with M) being design parameter given as an upper limit and XW being parameters to be met exactly, can 

also be well calculated using the Kuhn-Tucker conditions. For parameters with an upper and a lower 

limit (like -8$Y H -8 H -8$Z), two boundary conditions have to be modelled. 
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4.  Applying nonlinear optimization to fluid dynamics  

The optimization theory described can be applied to fluid dynamics calculations in may ways: 

•$ Calculating the mass flow ratio through parallel flows (like done above) 

•$ Optimize the overall mass-flow through a system 

•$ Calculating parameters of a flow restrictor to balance or stabilize parallel flows 

•$ Optimize a system with uncertain heat loads and  

•$ More sophisticated parameter studies. 

 

However, setting up the problem can be tricky. For example, the pressure drop according to eqn. 1 

is a complicated function of many parameters like the density, viscosity, temperature and the pressure 

of the fluid, the flow regime, heat loads and details of the geometry of the piping. Some formulas are 

given above, others are omitted in this context but can easily be found in text book. 

When translating the fluid flow problem into an optimization problem, material and fluid 

parameters, usually taken from a database, have to be parameterized. For example, the density of 

helium at 80 K is pretty accurately described by the ideal gas law. At 5 K, modifications have to be 

applied, however, low polynomial approximations exist. For example the dynamic viscosity is well 

described by an experimentally gained formula'7 " JO#[ \ #C]^ \ *_O`a'bc; \ de. Usually older 

publications are full of those approximation relations. 

The more demanding portion in setting up the problem is to translate eqn (1) such that it is only a 

function of the optimization parameters. If, for example, the geometry is given, 0) and 1) are known. 

In a typical scenario, *)+ and ,)+ would also be given and we assume you want to optimize the mass 

flows -) for various assumptions of (). Then, eqn (1) has to be a sole function of -). In the case 

mentioned, this becomes 

'

2f " CO#Jg \ h]aOi \ j]8 \ k]_O6 \ l \ m6O6$' (14) 

 

so the function to maximize will be 

 

n -8$ -6 " : 18
]oO` \ 48

]6 ',)+$ *)+' \ 78
]_Oa \ 08

6 \ -8
aOa > 16

]oO` \ 46
]6 ',)+$ *)+' \ 76

]_Oa \ 06
6

\ -6
aOa : %'18

]aOi16
]aOi \ 78

]_O676
]_O6 \ 08 \ 06 \ 48

]8 ',)+$ *)+'

\ 46
]8 ',)+$ *)+' \ -8

6O6 \ -6
6O6 O'

(15) 

 

Just as demonstration, one may calculate the analytical optimization of a simple parallel flow (as 

depicted in fig.1) where the heat loads are equal on each branch, but the pipe length 08 and 06 are 

different and a certain overall massflow -./.is given. Using eqn (1) a Lagrangian function according 

to eqn (5) can be set-up. Solving the optimization problem (eqn (3)) requires solving the system of 

equations given by eqns (6), which leads eventually to a quadratic problem, the solution of which is 

given by: 

 

08 "
#

%
06

-./. : -8

-8

_Oi

:
-8

-./. : -8

_O6

>
-./. : -8

-8

8O`

> %
-./. : -8

-8

_O`

: p
-8

-./. : -8

_Oa

'

(16) 

 

The result itself might not be very exciting: depending on what mass flow you choose for path 1, 

the length of that piping has to follow eqn (16) for a given length of the parallel pipe 06. In fact 
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plugging in numbers for the case describe in [5] leads to the exact same results. In that sense, using the 

optimization approach is not superior to the numerical approach we have chosen in the past.  

However, it need to be mentioned, that eqn (16), as well as any other solution of the optimization 

problem, is still an analytical expression. That means, one can easily investigate sensitivities to 

parameter changes or even do large parameter studies. This is especially valuable if for example heat 

loads are unknown or of statistical character (like in our initial problem set, where the heat loads from 

the higher order mode absorbers are of that type). 

5.  Conclusion 

Mathematical optimization methods like the Lagrange optimization or the non-linear optimization 

using Kuhn-Tucker conditions can be an alternative to iterative methods of calculating fluid dynamics. 

Even though setting up the problem initially can be tricky, as well as solving the system of equations 

gained from eqn. (6) or especially from eqns. (10-12), the result will be a fully analytical solution of 

the problem. If appropriate propagation of a free parameter through all equations and the optimization 

calculation is ensured the analytical result will be a function of exactly this parameter, which then 

allows very efficient studies of primary and secondary dependencies.  
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