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Abstract. We present experimental measurements and analysis of propagation of the nitrogen
gas that was vented to a high vacuum tube immersed in liquid helium (LHe). The scenario
resembles accidental venting of atmospheric air to a SRF beam-line and was investigated to
understand how the in-flowing air would propagate in such geometry. The gas front propagation
speed in the tube was measured using pressure probes and thermometers installed at regular
intervals over the tube length. The experimental data show the front speed to decrease along
the vacuum tube. The empirical and analytical models developed to characterize the front
deceleration are summarized.

1. Introduction

Superconducting radio frequency (SRF) cavities in linear accelerators (LINACs) are operated with high
vacuum on their inside, while being immersed in a bath of liquid helium (LHe). A string of these
cavities housed in a cryomodule forms a long LHe cooled vacuum channel. The accelerator can disrupt
catastrophically if the LHe cooled cavity accidentally loses its vacuum to the surrounding atmospheric
air. An accidental rupture at a cryomodule interconnect will provide the warm air (=295 K) a clear
path to enter the cavity space. The air will condense/solidify and rapidly deposit heat (=500 kJ/kg)
to the LHe cooled cavity walls. This heat will ultimately transfer to the adjacent LHe coolant, which
due to its low enthalpy of vaporization, can violently boil and cause excessive pressure build-up in the
cryomodule. Notable experiments to measure the LHe heat load [1, 2] have reported values ranging from
14 kW/m? to 23 kW/m? with uncertainty as large as 50%. Accurate measurement of the LHe heat load
is complicated due to the large length to cross-section ratio of the cavity string. In such a configuration,
the air will propagate down the vacuum channel and will condense on the cavity string section that
continuously lengthens with the advancing air front. The result will be a longitudinally distributed heat
load on the LHe bath from a surface area whose rate of increase will be determined by the speed of air
front propagation.

The propagation speed will also determine how quickly a certain length of the beam-line will
contaminate. A safety device installed to inhibit the beam-line contamination beyond this length must
actuate (close) before the front gets to the device location. The propagation speed thus dictates the
device actuation time. Dalesandro ef al. [3] investigated the longitudinal propagation along a scaled SRF
cavity string and observed the air front speed to decrease along the vacuum channel. This deceleration
is significant particularly in the case of a real SRF beam-line. A decelerating front will take more time
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than a constant speed front to travel from a ruptured interconnect to the location where the front can be
arrested. The safety device installed to arrest the front will then have more time to actuate.

This paper reviews the results of our empirical and analytical modeling efforts to charaterize the front
propagation. The loss of vacuum experiments [4] used a LHe cooled copper vacuum tube to which
near-atmospheric nitrogen gas was vented. The propagation data obtained from a series of experiments
show the front to decelerate with the travel length. On regressing these data, the front speed appears to
decrease nearly exponentially with the travel length [5]. The analytical model explains why the front
decelerates and when supplemented with condensation heat transfer analysis [6], offers support to the
observed exponential decay [7].

2. Experimental setup

To study the propagation, we developed an experimental setup that in a simplistic way, resembles the
accelerator cavity string layout. The schematic in figure 1 shows the general characteristics of the setup.
In this setup, an evacuated copper tube (1.5 m long, 38 mm outer diameter, and 3 mm thick) is immersed
in a large bath of LHe. The tube vacuum is isolated from a gas tank by a solenoid valve (SV). On opening
this valve, the nitrogen gas (a substitute for air) in the tank vents rapidly to the cold vacuum tube, thus
creating a ‘sudden loss-of-vacuum’ scenario. The setup is designed to generate near constant mass in-
flow rate to the tube and is instrumented to record the fast rise in the pressure and temperature of the tube
due to gas flooding and condensation. The tube carries along its length pressure probes on the inside and
thermometers on the outer wall. Figure 1 depicts four sensor stations spaced equally by 0.5 m (the gas
flow after venting is from station 1 to station 4). The sensor arrays measure the gas front arrival times at
these stations. The known sensor coordinates and the measured front arrival times yield the front speed.
Elaborate details of the experimental setup, the gas front tracking techniques, and the data acquisition
capabilities are given in [4, 8].
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Figure 1. Schematic of the experimental setup
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3. Results and discussion

Depicted in figure 2 are the pressure and temperature traces recorded at the four stations on the tube after
opening the SV. This experiment used 4.2 K He I as the coolant, the copper tube evacuated to ~10™* Pa,
and the supply tank containing nitrogen gas at 100 kPa, 295 K. On opening the SV, the gas enters the
vacuum tube, propagates down the vacuum space (pressurizes the tube), and condenses on the tube wall
(deposits heat and raises the tube temperature). Figure 2(a) shows the pressure rise in the tube. The initial
phase of pressurization is due to the forward propagating pressure front, which sets in immediately after
the vacuum loss. The pressure rise at station 1 is detected by the pressure probe <5 ms after opening the
SV, indicating the arrival of the pressure front at this station. The pressure front then travels down the
tube raising the pressure at stations 2, 3, and 4 in their order. The gas in this front condenses on the cold
tube wall and warms the tube along its length, again in order from station 1 to station 4. The traces in
figure 2(b) clearly show the tube warming up progressively along its length and to above the transition
to LHe film boiling temperature [9]. On passing station 4, the gas front encounters the closed end of
the tube and is unable to propagate further. The pressure traces in figure 2(a) depict the flow of gas that
reflects from the closed end. The gas further flowing in to the tube then pressurizes the tube uniformly
over its length (nearly equal pressure at all the stations), until the pressure in the tube equals the supply
tank pressure.

The speed of front propagation can be obtained from the front arrival times recorded by the pressure
probes as well as by the thermometers. On carefully observing the time axes of figure 2, the propagation
of the temperature front in the tube wall (figure 2(b)) appears faster than the propagation of the pressure
front in the vacuum space (figure 2(b)). This difference, as elaborated in [5], is due to the thermometers
being more responsive in detecting the front arrival than the pressure probes. The front propagation speed
in the present study is, therefore, obtained in terms of the arrival times recorded by the thermometers.

The tube wall temperature traces of figure 2(b) also reveal the front deceleration. Clearly, the front
takes longer to travel from station 3 to station 4 than it takes from station 2 to station 3, and so on.
To study the deceleration further, we installed eight additional thermometers on the vacuum tube and
obtained temperature traces at twelve locations over the tube length. This enhancement reduced the
spacing between adjacent thermometers from 0.5 m to 0.125 m. Furthermore, we vented nitrogen gas
to the vacuum tube at three different mass flow rates by starting with 50 kPa, 100 kPa, and 150 kPa of
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Figure 2. Traces of the tube (a) pressure and (b) wall temperature recorded at the four stations
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Figure 3. Gas front arrival times at the twelve thermometer stations fitted with r = a(e*/? — 1). The
parameters a and b with their standard errors are listed in the accompanying table.

the gas in the supply tank. The front arrival times at the twelve thermometer stations in this series of
experiments are plotted in figure 3 with the locations of the thermometer stations. We defined the arrival
time at a location as the time when the temperature at that location exceeds a threshold of ~10 mK above
the initial LHe temperature. The method to define this threshold and to calculate the uncertainty in the
arrival times (the error bars) is elaborated upon in [5]. Also plotted in figure 3 are the two-parameter
exponential fits r = a(ex/ b _ 1), which best represent the arrival time (¢) vs. location (x) data. This
non-linear exponential fit ensures that the front is at location x = 0 (entrance of the copper tube) at time
t = 0 (the arrival time at the tube entrance). The fit parameters a and b were obtained by non-linear least
squares regression and are tabulated in figure 3 with their standard errors. The fit on taking a derivative
with respect to x yields the propagation speed:

v=(b/a)e /", (H

suggesting that the front indeed decelerates and its speed decays exponentially along the vacuum tube.
The parameter b can be termed as the speed decay length-scale— the travel length over which the speed
falls to 1 /e of its value at x = 0. The decay length-scale, as seen in the table of figure 3, is larger for higher
starting pressure (higher mass in-flow rate). This outcome is quite intuitive because the gas front arising
from a higher mass in-flow rate will travel farther before the front speed falls by a given proportion (for
example, 1/e of the initial value).

4. Analytical modeling
The analytical model aims to explain the front deceleration. Figure 4 schematically shows a gas front
propagating along a vacuum tube in the presence of condensation. The gas enters the vacuum tube
at X = 0. The gas present over the length X = x condenses on the inner surface of the cold tube.
Conservation of mass applied to the gas phase yields the following expression for the front propagation
speed:

titin — 7D [ 1ty , (X, 1) dX

(7D /4)p|x

vy =

(@)
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Figure 4. Gas front propagation in a vacuum tube in the presence of condensation

In eq. (2), riv, is the inlet mass flow rate (taken to be constant with time), m:l ep is the mass condensation
rate per unit surface area (taken to be location and time dependent), D is the tube inner diameter, p is
the gas density, and |, denotes the quantities at the gas front. Equation (2) builds by assuming a one-
dimensional flow and by taking the mass of gas that remains in the gas phase to be negligible compared to
the mass in-flow rate. The steps in deriving eq.(2) are given and the assumptions are justified in [5]. The
front deceleration is immediately clear from eq. (2). The propagation speed at x, according to eq. (2),
depends on the rate of mass condensation over the length x of the tube. As the front advances, the
length x, and consequently the tube surface area on which the gas condenses, will continuously increase.
The increasing surface area will remove a larger portion of the constant in-flux of the gas and therefore
according to eq. (2), will slow the propagation.

The analytical model of eq. (2) explains the deceleration qualitatively but does not allow to solve for
the propagation speed. The main limitation is that m’;e , over the entire length x is not known and so the
integral in eq. (2) cannot be evaluated [5]. However, the model on simplification and when supplemented
with m;’,e p at discreet locations along the tube supports the exponential decay.

Assuming that the density of the gas at the front does not significantly change as the front propagates,
the derivative of v (eq. (2)) with respect to x gives:

"

—di,, |«
dv/dx)|, = —=L— 3)
(dv/dn)] = — e
On differentiating with x, the empirical fit of eq.(1) yields:
(dv/dx)|; = (—1/a)e™/". @)

If egs.(3) and (4) are equivalent, then m;ep | o< e~*/?_ This relation implies that the mass deposition rate
at the front should decrease exponentially as the front advances in the tube and should have the same
decay length-scale, b as that of the front speed. We estimated m;’,ep at the twelve thermometer stations
by evaluating the local condensation heat transfer rates at these stations [6] based on the measured
temperature data and accounting for the enthalpy of condensation. For the three experiments, the
estimated rates of mass deposition m’c’,ep|x vs. the location x in the tube are plotted in figure 5 [7]. The
error bars represent the uncertainty constituting the measurement and the procedural uncertainty (details
presented in [7]). The deposition rate m’[',ep|x in figure 5 does appear to decay along the tube. We fitted

exponential curves of the form m:; el =a" ¢ /%" to each data set and calculated the fit parameters a”
and b” by least squares method. The parameter b” here is the decay length-scale of the deposition rate.
The table in figure 5 lists the fit parameters and their standard errors. As elaborated in [7], the mass
deposition rates at some stations on the tube (viz. stations 1, 4, 6, and 8) are found to carry large error
and have been excluded from the fitting routine.

Figure 6 compares the exponential decay length-scales b (based on the arrival times regression) and b”
(obtained from the mass deposition rate analysis). Within the error bars, the decay length-scales obtained
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Figure 5. Gas front arrival times at eight thermometer stations fitted with m;ep\x =d"e /", The
parameters a” and b” with their standard errors are listed in the accompanying table.

from the two independent analyses match reasonably in the trend and in the values. This match further
supports the observed exponential decay in the front speed.
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Figure 6. Comparison of the exponential decay length-scales

5. Summary

The experimental measurements show that after sudden venting, a nitrogen gas front propagating in a
LHe cooled vacuum channel decelerates along the channel. By relating the front speed to the difference
between the mass in-flow rate to the channel and the total mass deposition rate on the channel inner
surface, the analytical model provides qualitative support to the front deceleration. The advancing front
makes available an increasing condensing surface area, which per unit time will condense more gas from
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behind the front. With a constant mass in-flow and increasing mass deposition behind the front, the front
speed will decrease with the propagation length.

We regressed the measured front arrival times and found the front speed to decay nearly exponentially
with the travel length. The analytical model, on simplification, shows that the spatial derivative of the
front speed is proportional to the mass deposition rate near the front. The exponential decay of the front
speed results from the exponential decay of the near-front deposition rate. Note from figure 2 that in
our experiments, the propagating front was arrested by the closed end of the tube. As a result, we do
not know at present if the front will continue to decay exponentially beyond the length of our vacuum
tube. Although the near-front mass deposition rate decreases along the tube, the rate is still high enough
in the present experiments to onset film boiling in the LHe (see section 3, figure 2(b)). Over longer
travel lengths, the deposition rate may fall to values that are insufficient to onset local film boiling in the
liquid. The front speed at such lengths may then not decay exponentially. The possibility of a different
propagation regime has been discussed in [5].
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