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Abstract. Radiative heat transfer is usually of substantial importance in cryogenics when
systems are designed and thermal budgeting is carried out. However, the contribution of pipes
is commonly assumed to be comparably low since the warm and cold ends as well as their cross
section are fairly small. Nevertheless, for a first assessment of each pipe rough estimates are
always appreciated. In order to estimate the radiative heat transfer with traditional “paper and
pencil® methods there is only one analytical case available in literature — the case of plane-
parallel plates. This case can only be used to calculate the theoretical lower and the upper
asymptotic values of the radiative heat transfer, since pipe wall radiation properties are not
taken into account. For this paper we investigated the radiative heat transfer estimation in
pipes with various wall emissivities with the help of numerical simulations. Out of a number of
calculation series we could gain an empirical extension for the used approach of plane-parallel
plates. The model equation can be used to carry out enhanced paper and pencil estimations for
the radiative heat transfer through pipes without demanding numerical simulations.

1. Introduction

The heat transfer through inclined pipes has been investigated by our group for a couple of
years. The main driver for these investigations was the fact that the interconnecting pipework
between the warm and cold temperature level can contribute to the heat intake of a cryogenic
storage system, especially under critical inclinations where the warm end is placed below the
cold end [1].

In these critical cases the total heat transfer mainly caused by natural convection can increase to
several watts, while the pure conductive heat transfer is in the magnitude of several milliwatts
[1].

In all of these previous considerations the radiative heat transfer was neglected since the order
of magnitude was assumed to be very small in comparison to the convection. Nevertheless, a
certain contribution has to be taken into account, especially when the pipe is placed in a way
that almost no natural convection occurs inside.

In the literature only a number of investigations are available which deal with the radiative heat
transfer in closed cavities. The paper of Hieke et al. [2] determined a negligible contribution
of the radiative heat transfer in case of a pipe with large aspect ratio L/D. Hollands et al. [3]
investigated the coupling of conductive and radiative heat transfer in honey comb cavities for
solar panels with the help of numerical simulation. They could show that the radiative heat
transfer under vacuum conditions in the cavity has a certain contribution to the total heat
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Figure 1. The pipe geometry and definitions for the calculation model.

transfer beside the thermal conduction. The study further revealed a rather low influence of
the temperature distribution along the wall from the warm to the cold side. Slight changes of
the temperature distribution only involved negligible changes in the radiative heat transfer. As
a result, Hollands et al. [3] suggested a decoupled calculation of conduction and radiation for
typical cases. This finding is in accordance with remarks in other publications, e.g. Rohsenow
[4]. Tien and Yuen [5] extended the investigations of Hollands et al. [3] and introduced a larger
number of different model geometries to be investigated — but in general with the same findings.
They also determined that a decoupled calculation of the thermal conduction and the radiation
is sufficient with respect to acceptable accuracies.

Easy-to-use analytical models or correlations for lumped heat transfer estimation through a pipe
are only available for the case of pure heat conduction and for the case of coupled conduction,
radiation and convection [6]. For the pure radiative heat transfer a calculation is only possible
by using the analytically solved case of radiation between plane-parallel surfaces in VDI Heat
Atlas [7]. Within this model no pipe wall influence - especially the emissivity - is taken into
account here, but obviously should.

Hence, the main aim of our investigations is to study the radiative heat transfer through pipes
including the effect of various pipe wall emissivities in order to generate an enhanced model for
“paper and pencil“ heat transfer estimations.

2. Geometry, definitions and assumptions

The considered geometry is a straight pipe closed at both ends by end plates. The inner diameter
of the pipe is D, the total inner length is L. The aspect ratio is AR = L/D.

The warm end of the pipe has a constant temperature of T, the cold end that of T.. Along
the pipe wall we assume a linear temperature distribution from 73, to T.. Temperature changes
due to radiative, convective or conductive heat transfer will be neglected in accordance with the
mentioned references.

Concerning the radiative properties we assume the whole geometry to obey the model of grey and
diffusive surfaces with a constant total hemispherical emissivity' e. The authors are fully aware
of the complex characteristics of radiation with respect to wavelength, hemispherical emission
and temperature dependencies. However, they are not specifically taken into account here.
The emissivity of both end plates is defined as ey, the emissivity of the pipe wall as ep,,.
The pipe geometry and corresponding definitions are shown in Figure 1. Due to these system
definitions a net radiation exchange? ¢,,q between the warm and the cold end of the pipe is
induced. The radiative heat transfer will be evaluated per area in W/m?.

! Within this paper we generally name the total hemispherical emissivity just emissivity for the sake of legibility.
2 Within this paper we generally name the net heat exchange by the radiative heat transfer between the warm
and the cold end.
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Figure 2. Calculation of the radiative heat transfer per area in a straight pipe with varying
aspect ratio AR for constant temperatures T, = 4 K and T,, = 300 K and an emissivity of
Ew,e = L.

3. Available analytical approaches

The only available approach for estimating the radiative heat transfer along a straight pipe
without complex numerical computations is that of two plane-parallel surfaces [7]. At first glance,
two plane-parallel surfaces do not have too much in common with a straight pipe. But, on second
view we can use this model to at least find asymptotic values for the radiative heat transfer along
the straight pipe.

Theoretical minimum of radiative heat transfer In case the pipe wall has no reflecting
properties, we can assume the two plane-parallel surfaces at the ends are the only parts of the
pipe geometry contributing to the radiative heat transfer. The net amount of the absorbed heat
at the cold plate is directly emitted by the warm plate. No further reflection of the pipe wall
is taken into account. Hence, the minimum radiative heat transfer can be calculated with the

following set of equations:
C T -T2
Aradmin = 3 : < 111004 < ) (1)

¢:1+2-AR2(1—,/;R2+1) (2)

In this set Cs = 5, 67m2LK is a constant, ¢ is the case specific view factor.
An exemplary calculation of g, for varying values of AR is given in Figure 2.

Theoretical maximum radiative heat transfer On the basis of ¢,4q,,,, it is also possible
to derive the maximum radiative heat transfer g,qq,,,, per area. With respect to our definitions
the maximum case would occur by using an arbitrary emissivity €, . and a pipe wall with ideal
reflectivity. This means, each reflected ray is transported to the opposite end. In equation (1)
obviously no dependency to &, is given. But, we can assume this case to be equivalent to the
geometry condition AR — 0. As a result, the ideal ¢,qq can be calculated as follows:

max

Cs T — T
= . 3
qTadma,x 2 2 _ 1 < 1004 ( )

for varying values of AR is given in Figure 2. The calculation emphasizes
due to the independence of the length

A calculation of ¢,44,,,.
that grq4,,,, 15 an extension of the maximum case of ¢4
of the pipe.

min



ICECICMC IOP Publishing
IOP Conf. Series: Materials Science and Engineering 171 (2017) 012096 doi:10.1088/1757-899X/171/1/012096

4. Numerical investigation and empirical model approach

Even though the radiative heat flux is obviously low for typical pipes with higher aspect ratios
L/D, the available approach with two plane-parallel surfaces only helps to localize the region
of expectable ¢.qq. This was the motivation to start own numerical simulations in order to
characterize the influence of the pipe wall more precisely.

For this we used the radiation module of Ansys CFX in order to evaluate the radiative heat
transfer numerically. Within the radiation module we applied the Discrete Transfer Model
(DTM)[8] in combination with the surface-to-surface option to numerically map the radiation
field. Basically, this model approach simulates a discrete number of rays approaching and
departing from any surface element. For each ray a transport equation is solved in order to
model energy conservation during emission, transmission and reflection. The surface-to-surface
option is a simplification with respect to the fluid inside the pipe. Surface-to-surface implies that
any gas inside the pipe is fully transparent and no interaction with transmitted rays takes place.
In order to achieve a mesh independent solution, we carefully carried out a number of mesh
optimization calculations.

Based on this simulation background we carried out a series of simulations with the following
changes of the boundary conditions:

aspect ratio AR = 1...50

emissivity €, = 0...1

emissivity ey, = 0...1
temperatures T, =4 K, T,, = 300 K

With these varying input values we carried out a calculation series with 433 single simulations.
After each simulation we evaluated the radiative heat input to the cold end.

In order to correlate the results it was necessary to find a form function which matches all
physical requirements. The requirements can be described as follows:

® Grad,,;, is the lower asymptotic solution. gqq is the result when either AR — oo or

Epw — 0.

min

® Grad,.., i the upper asymptotic solution. gqq,,,, is the result when either AR — 0 or
Epw — 1.

e The correlation has to follow the approach a4, .., = f(@rad,,i,; Tradmas; AR Epw)-

The resulting form function is:

AR

qradmod = qradmin + (1 - Epw qradmaa; - qradmin) (4)

The terms for grqq,,, and gra4,,,, are the same as in equation (1) and (3). The term f,, is an
unknown function or a constant which has to be correlated to the results of the simulations.
In our case we correlated f,;,, to a constant value. With the help of a least square fit we obtained
fm = 0.38. Hence, the final correlation is:

J0-38-AR

Qrad,meq = 9radmin + (1 — Epw Qradmar — QTadmm) (5)

An evaluation of the modelled radiative heat transfer is given in Figure 4 for two different cases.
The results of the calculations will be discussed in detail in the following section.

5. Discussion of results

In order to interpret and discuss the results of our modelled radiative heat transfer it is helpful to
shortly summarize what we have done so far. Firstly, we applied the available analogous model
of radiation between plane-parallel surfaces. With this model only the two asymptotic cases
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Figure 3. Calculation of the radiative heat transfer for all three cases ¢rad,,;,> Yrad,.., and
drad,,,,; in a straight pipe with varying aspect ratio AR for constant temperatures T, = 4 K and
T, =300 K.

can be calculated due to the neglected influence of the pipe wall. One result is the theoretical
minimum of g.qq since only direct transfer of rays between warm and cold end is considered.
The other result is the theoretical maximum for ¢,,q which can occur in case the pipe wall has
fully reflecting properties so that all rays coming from the end walls will be reflected to the
opposite end. This is why we can observe the apparent independence of length. Both cases are
not representative for typical construction materials but have been used as limiting parameters
for the correlation. More common values for emissivity are e.g. ¢ = 0.7 for strongly corroded
copper surfaces or € = 0.1 for polished stainless steel. Both cases have been analysed in Figure
4(a) and (b) with the correlation.

A deeper look to the results shows some details about the characteristics to be expected for both
materials.

In case of strongly corroded copper we can observe that the initial radiative heat transfer is
higher and therefore also the maximum value gqq,,,, for comparably short pipes. But at the
same time the absorption at the pipe wall is higher and therefore the decrease of ¢,qq , towards
higher aspect ratios is very large.

In case of stainless steel the initial radiative heat transfer is lower and therefore also the
achievable maximum value of grqgq,,,,. The much better reflecting properties of the pipe wall
involve a higher reflection of the rays inside the pipe. Hence, the decrease of ¢,.qq . to higher
aspect ratios is comparably low with respect to corroded copper.

From this we can conclude that specifically stainless steel pipes are more critical in terms of
radiative heat intake in comparison to copper. They can be expected to have a higher radiative
heat transfer from the warm to the cold end (otherwise unchanged conditions) even when the
emissivity of the warm end the cold end are comparably small. With the help of the correlation
we can estimate the point of intersection at an aspect ratio of approximately AR ~ 6 (see Figure
4). However, we have to keep in mind that this effect of higher radiative heat intake might be
compensated or even cancelled out by higher thermal conduction. A cross-checking has to be
done individually by the pipe designer.

Unless the new calculation model gives a more exact value for ¢,.,q in comparison to the approach
with plane-parallel surfaces and includes the pipe wall influence, one has to keep in mind that
no experimental validation has been done. Moreover, the authors believe that an experimental
validation is most likely very demanding with respect to very small total heat transfer values. The
model generation applied here is based on numerical calculations with underlying assumptions.
This is why the authors cannot give a typical deviation.

mod

mod
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Figure 4. Comparison of ¢.qq__, for both copper with € = 0.7 and stainless steel with € = 0.1.

mod

6. Conclusion

In previous investigations about interconnecting pipework in cryogenic applications it was shown
that natural convection in combination with the heat conduction is the predominant effect of heat
transfer along a typical pipe. Thermal radiation was either included in performed experiments
or assumed to be negligible in numerical simulations. In this paper we tried to focus on methods
to calculate the fraction of the radiative heat transfer — preferably with easy-to-use methods. In
literature only the model of plane-parallel surfaces is available. But, this is only appropriate to
calculate the lower or upper limit since the pipe wall influence is not considered at all. Hence, the
calculable values do most probably not fit for the most technical configurations with pipes. This
is why we extended the model of plane-parallel surfaces by additional terms which introduce
the influence of the pipe wall by the emissivity. A correlation was fitted by a large number of
numerical simulations. In the end we could gain an easy-to-use model equation for radiative
heat transfer estimations with consideration of the pipe wall on the basis of the model of the
plane-parallel plates. The new model equation can be used for more accurate estimations for
the radiative heat transfer through a certain pipe in the overall heat balance. With respect to
no experimental validation for the correlation, the authors recommend to handle the results as
an estimation of the expectable order of magnitude. Further improvements of the model could
be to extend the simulations to different emissivities for the warm and the cold end. This would
give the opportunity to take into account the temperature dependency of the emissivities.
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