
 
 
 
 
 
 

A collaborative vendor-buyer production-inventory systems 

with imperfect quality items, inspection errors, and stochastic 

demand under budget capacity constraint: a Karush-Kuhn-

Tucker conditions approach 

N.A. Kurdhi1, R.A. Nurhayati2, S.B. Wiyono3, S.S. Handajani4 and T.S. Martini5 

1,2,3,5Department of Mathematics, Sebelas Maret University, INDONESIA 
4Department of Statistics, Sebelas Maret University, INDONESIA 
 
E-mail: arfa@mipa.uns.ac.id1, rizki.aprilia71@gmail.com2, sabuwhy@gmail.com3, 
ssulistijowati@yahoo.com4 and titinsmartini@yahoo.com5  

 
Abstract. In this paper, we develop an integrated inventory model considering the imperfect 
quality items, inspection error, controllable lead time, and budget capacity constraint. The 
imperfect items were uniformly distributed and detected on the screening process. However there 
are two types of possibilities. The first is type I of inspection error (when a non-defective item 
classified as defective) and the second is type II of inspection error (when a defective item 
classified as non-defective). The demand during the lead time is unknown, and it follows the 
normal distribution. The lead time can be controlled by adding the crashing cost. Furthermore, 
the existence of the budget capacity constraint is caused by the limited purchasing cost. The 
purposes of this research are: to modify the integrated vendor and buyer inventory model, to 
establish the optimal solution using Kuhn-Tucker's conditions, and to apply the models. Based 
on the result of application and the sensitivity analysis, it can be obtained minimum integrated 
inventory total cost rather than separated inventory. 

 

1. Introduction 

Nowadays, integrated inventory management has enjoyed a great deal of attention. The integration 
model exists because the inventory replenishment decisions are treated separately from the viewpoints 
of buyer and vendor based on economic order quantity (EOQ) and economic production quantity (EPQ). 
The results shows that the optimal EPQ solution for the vendor is not acceptable to the buyer, and vice 
versa. To identify the efficient solutions, both buyer and vendor should coordinate and collaborate to 
achieve good inventory management. The supply chain collaborative advantages from a firm’s 
perspective have been showed by Chao and Zhang [5], such as process efficiency, offering flexibility, 
business synergy, quality and innovation. Goyal [7] was a pioneer in the study of the integrated inventory 
model. He developed a joint economic lot-sized model for single buyer and single vendor with infinite 
production rate. Banerjee [3] developed the model by incorporating a finite production rate and 
following a lot-for-lot policy for the vendor. After that, more researchers considered different cases in 
integrated inventory model about permissible delay in payments [6], inflation [4], service level 
constraint [18], price-dependent demand [22], and fuzzy random framework [23]. However, a common 
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unrealistic assumption of the above integrated inventory models is that all items received by a buyer are 
of good quality. 

In a real system, due to the imperfect production process of the vendor, damage in transit, or other 
unforeseeable circumstance, goods that were received by the buyer often contain some defective items. 
Further, Goyal et al. [8] and Huang [12] developed integrated vendor-buyer inventory models for items 
with imperfect quality. They assumed that items of poor quality detected in the screening process of a 
lot are sold at a discounted price. Several researchers, including Hsu and Hsu [10], Lin [20], Bag and 
Chakraborty [2], Kurdhi et al. [16], Jindal and Solanki [13] proposed integrated vendor-buyer 
production-inventory model under imperfect quality items in various conditions. However, the above 
mentioned papers assumed that there is no error in the inspection process. Khan [14] stated that there 
are still wastes generated by errors in screening, although there have been advancements in technology. 
This means that the screening errors may occur with imperfect quality in practice. Moreover, Khan [14] 
asserted that the inspection accuracy is influenced by some factors. More specifically, these factors can 
be categorized into three groups: inspector related factors, task related factors and environmental factors. 
Lin [19] proposed an integrated vendor-buyer model for items with imperfect quality and inspection 
errors. He suggested two types errors usually could be found in inspection process. These are Type I 
error, in which the inspector may incorrectly classify a non-defective item as defective; and Type II 
error, in which a defective item is classified as non-defective. The Lin’s [19] model assumed that both 
the Type I and Type II inspection errors are known constants. Hsu and Hsu [11] then developed a 
production-inventory model with defective items and inspection errors, where the both type of errors 
are viewed as random variable. There are more papers related to inspection errors on integrated model 
such as Widianto et al. [25], Khan et al. [15], Priyan and Uthayakumar [21].  

In the integrated inventory management system with both imperfect quality items and inspection 
errors, the integrated inventory model under deterministic demand to be widely discussed. However, it 
is noticed that the inventory literature on the integrated inventory model under stochastic demand 
discussing screening errors is quite sparse. Nearly all integrated models that consider the inspection 
errors assume no uncertainty in demand and shortages are not allowed. On the other hand, Al-Salamah 
[1] proposed two EOQ models with stochastic demand, imperfect quality, and inspections errors. In the 
models, shortages are backordered and demand during lead time has a certain probability density 
function. However, the Al-Salamah’s [1] models focused on determining optimal policy for the buyer 
only (one-echelon model). These models neglect the opportunity that buyer and vendor can cooperate 
and negotiate with each other to obtain a better integrated policy. We also notice that in the inventory 
models under inspection errors, shortages, reorder point, lead time reduction, and budget constraint were 
not considered. Separately, Priyan and Uthayakumar [5] considered budget capacity constraint on an 
integrated inventory model. On the model, the buyer has limited capacity to purchase products. On 
the other hand, there is an upper bound on the purchase of products. According to Kurdhi et al. [16, 17], 
in many practical situations, lead time can be reduced, by an additional crashing cost, customer service 
level improved, inventory in safety stocks reduced, and the competitive edge in business increased; in 
other words, it is controllable.  

Summarizing the above description, we seek to investigate a two-echelon production-inventory 
model by considering shortage backlogging, imperfect quality items, inspection errors, lead time, budget 
capacity constraint, and stochastic demand. In this study, the percentage of defective item and lead time 
demand are assumed to follow a uniform distribution and a normal distribution, respectively. It is also 
assumed that the partial backorder situation is considered. This means that the shortages are partial 
backordered and partial lost sale with a certain backorder rate. The aim is to minimize the integrated 
inventory system total cost by optimizing the order quantity, reorder point, lead time, and the number 
of deliveries per batch production run. This paper continuous with notations and assumptions in Section 
2. Section 3 and 4 present model formulation and solution methodology, respectively. A numerical 
example and sensitivity analysis are discussed in Section 5. Finally, conclusions are given in Section 6.  
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2. Notations and Assumptions 
To develop the proposed model, the following notations and assumptions are introduced. 

2.1.  Notations ��  : size of production batch of items at the vendor �   : size of the deliveries from the vendor to the buyer (decision variable) �  : reorder point �  : safety factor (decision variable) �   : number of deliveries per batch production run (decision variable) �   : annual demand of the buyer �    : annual production rate at the vendor �    : inspection rate 	
  : setup cost per production run for the vendor 	�  : ordering cost per order for the buyer �    : probability that an item produced is defective 
(�)  : probability density function of  � ��      : probability of a Type I error (classifying a non-defective item as  defective) ��      : probability of a Type II error (classifying a defective item as non-defective) ��   : buyer’s inspection cost per unit ��  : vendor’s unit cost for producing a defective item (warranty) ���  : buyer’s cost of a post-sale defective item ��
  : vendor’s cost of a post-sale defective item ��  : cost of accepting a defective item (�� = ��� + ��
) �� : cost of rejecting a non-defective item ℎ
  : holding cost per unit per year for the vendor ℎ�  : holding cost per unit per year for the buyer �  : transportation cost per delivery ��  : number of items that are classified as defective in each delivery of � units ��  : number of items that are returned from the market  in each delivery of � units �  : time interval between successive deliveries of � units �� : period during which the vendor produces ��  : period during which the vendor supplies from inventory ��  : cycle time �  : length of lead time for the buyer (decision variable)  (�)  : lead time crashing cost !  : buyer’s shortage cost (penalty cost) !"  : buyer’s marginal profit #  : fraction of the demand during the shortage period that will be backordered, #$ [0,1] +  : buyer’s purchasing price per unit item �  : buyer’s maximum available budget to purchase products ,  : lead time demand with finite mean �� and standart deviation -√� ≥ 0 0(∙) : mathematical expectation 23 : maximum value of 2 and 0, i.e., 23 = max72, 08 ∗   : superscript representing optimal value. 

 2.2.  Assumptions 

1. There are a single vendor and a single buyer with a single product. 
2. The buyer’s inventory is continuously reviewed and replenishments are made whenever the 

inventory level falls to the reorder point �. The reorder point � = expected demand during lead 
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time + safety stock (		), and 		 = � × (standard deviation of lead time demand), i.e., � =�� + �-√�, where � is the safety factor. 
3. The production processes are imperfect and may produces defective items. The defective 

percentage (�) is variable random uniformly distributed with probability density function 
(�). The inspection process is also imperfect. There are two types of possibilities. The first 
is type I of inspection error (when a non-defective item classified as defective) and the second 
is type II of inspection error (when a defective item classified as non-defective). 

4. The lead time � has ; mutually independent components. The <th component has a normal 
duration =>, a minimum duration ?>, and a crashing cost per unit time �>. Furthermore, for 
convenience, we rearrange �> such that �� ≤ �� ≤ ⋯ ≤ �B. Then, it is clear that the reduction 
of lead time should first occur on component 1 (because it has the minimum unit crashing 

cost), and then component 2, etc. If we let �" = ∑ =DBDE�   and �> be the length of components 1, 2, … , < crashed to their minimum duration, then �> can be expressed as  �> = ∑ =D − ∑ I=D − ?DJ>DE�BDE� , < = 1,2, … , �; 

and the lead time crashing cost  (�) per cycle for a given � ∈ [�>, �>L�], is given by  

  (�) = �>(�>L� − �) + ∑ �DI=D − ?DJ.>L�DE�  

5. Shortage is allowed for the buyer and partially backordered. 
6. The purchasing cost for all products is limited, mathematically, +� ≤ �. 

3. Model Formulation 
In this paper, an integrated single-vendor and single-buyer inventory model involving defective items, 
inspection errors, stochastic demand, controllable lead time, and partial backorder under budget capacity 
constraint. The coordination mechanism is such that the vendor receives the buyer’s demand and 
produces the single product at a finite production rate P. The vendor replenishes the order in a number 
of equal-sized shipments. It is assumed that the vendor’s production processes are imperfect and 
devective items may be produced. Thus, once the buyer receives the lot-size �, a 100% screening 
process is conducted. The length of the screening process is N� = �/�  year. The screening process is 
also imperfect in that an inspector may incorrectly classify a non-defective product as defective (Type I 
error), or a defective product as non-defective (Type II error). It is assumed that the customers who buy 
the defective items will detect the quality problem and return them to the buyer and receive a good item 
from the buyer. Later, the buyer returns all items classified as defective and those returned from the 
customers to the vendor, and receives a full price refund from the vendor. Both the vendor and the buyer 
incur a post-sale failure cost (e.g., loss of good will) for the items returned from the market. The goal of 
this study is to simultaneously optimize the order quantity, safety factor, lead time and the number of 
lots delivered from vendor to buyer with the objective of minimizing the total supply chain integrated 
cost and the constraint is satisfied. 

 
3.1.  The buyer’s cost formulation 

The buyer’s total inventory cost consists of ordering cost, transportation cost, screening cost, post-sale 
failure cost for the buyer, crashing lead time cost, holding cost, and shortage cost. The behaviour of the 
inventory level over time for the buyer is described in Fig.1. The buyer’s inventory system with random 
lead time demands, the inventory level is continuous reviewed and new order is triggered until the 
inventory level declines to � units. If the lead time demand exceeds the reorder point, the inventory 
system will experience shortages. The shortages are partial lost sale and partial backordered with 
backorder rate #. Let (, − �)3 = max 7, − �, 08. Then the number of demand backordered is #0[(, − �)3], and the number of demand lost is (1 − #)0[(, − �)3], where 0[(, − �)3] is the 
expected inventory shortage at the end of a cycle. We note that the lead time demand, ,, follows a 

normal distribution with p.d.f. 
(⋅), mean �� and standard deviation -√�; and the reorder point � =�� + �-√� (assumption 2). Then we have 
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0[(, − �)3] = Q (2 − �)
(2)R2S� = -√�Ψ(�), 

where Ψ(�) = U(�) − �[1 − Φ(�)], and U and Φ are standard normal distribution and cumulative 
distribution function, respectively. Hence, the shortage cost for the buyer per production cycle will be �[! + !"(1 − #)]-√�Ψ(�), 
where  ! and !" represent the buyer’s penalty cost and marginal profit. 

 

 
Figure 1. Behavior of the buyer’s inventory level over time 

 
 

By definition, the number of items that are classified as defective include those that are non-defective, �(1 − �), and incorrectly classified as defective (with probability ��), and those that are defective, ��, 
and classified as defective (with probability 1 − ��); thus, we get �� = �(1 − �)�� + ��(1 − ��). 
The number of defective items returned from the market are those that are defective, ��, and incorrectly 
classified as non-defective (with probability ��); thus, we have �� = ����. 
Since we assume that the defective items returned from the market are replaced with good items, the 

inventory will be depleted at a rate of �W = � + �XY . By definition, the cycle length 

 � = ZL�[\W = ](�L^)(�L_[)\ . 

Hence, the holding cost per production cycle is  

           ` � = �ℎ� a��N� + �XY� b + �ℎ�� aZL�[� + � − �� + (1 − #)-√�Ψ(�)b 

     = �ℎ� cZX[(�Ld)_[3d(�L_X)]e + Z(�L^)(�L_[)\ fZ� [1 − (�� + γ) + γ(�� + 2��)] +                          �-√� + (1 − #)-√�h(�)ij. 

  The ordering cost, transportation cost, screening cost, and crashing lead time cost per delivery cycle 
are 	�, �, �>�, and  (�), respectively. There are � deliveries in one production cycle, then the ordering 
cost, transportation cost, screening cost, and crashing cost per production cycle are �	�, ��, ����, and � (�), respectively. Further, the buyer incur a post-sale failure cost ��� for each item being returned 
from the market. Then, the post-sale failure cost for the buyer per production cycle is ��������. 

Then, the buyer’s total cost in a production cycle is the sum of ordering, transportation, screening, 
post-sale failure, crashing, holding, and the shortage costs 
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0� �(�, �, �) = �	� + �� + � (�) + ���� + �������� + �[! + !"(1 − #)]-√�Ψ(�) 

              + �ℎ� cZX[(�Ld)_[3d(�L_X)]e + Z(�L^)(�L_[)\ fZ� [1 − (�� + γ) + γ(�� + 2��)] + �-√� +                (1 − #)-√�h(�)ij. 
 
3.2. The vendor’s cost formulation 

The vendor prepares for the repeating flow of orders size �� = �� from the buyer by producing items 

in in batches of size �� and by planning to have each batch delivered to the buyers in � deliveries, each 

with a lot of � units. Fig. 2 shows the vendor’s holding cost per cycle. After adding setup, warranty, 
type I and type II errors, and holding costs, the expected cost per year for the vendor is 

                   0� �(�, �) = \klmZ(�Ln[d])(�L_[) + \[�o_[d]3�p(�Ln[d])_[3�qln[d]_X](�Ln[d])(�L_[)  

                                           +ℎ
 c Z\r(�Ln[d])(�L_[) − mZ\�r(�Ln[d])(�L_[) + (mL�)Z� j. 

 
Figure 2. Time-weighted inventory for the vendor 

 
3.3. An integrated vendor-buyer production-inventory model 

The expected total annual cost of the vendor and buyer is 

    0� (�, �, �, �) = 
\aks3t3u(v)3[w3wx(�Ly)]z√v{(|)bZ(�Ln[d])(�L_[) + \[�}3�qsn[d]_X](�Ln[d])(�L_[)  

              +ℎ� cZ\I(�Ln[d])_[3n[d](�L_X)Je(�Ln[d])(�L_[) + Zn[~]�(�Ln[d])(�L_[) + �-√� + (1 − #)-√�h(�)j 
             + \klmZ(�Ln[d])(�L_[) + \[�o_[d]3�p(�Ln[d])_[3�qln[d]_X](�Ln[d])(�L_[)  

             +ℎ
 c Z\r(�Ln[d])(�L_[) − mZ\�r(�Ln[d])(�L_[) + (mL�)Z� j. 
The purchasing cost for all products is limited, mathematically, +� ≤ �. The integrated vendor- buyer 
inventory model with budget capacity constraint is 
     Minimize 0� (�, �, �, �) =  
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\(ks3t3u(v)3[w3wx(�Ly)]z√v{(|))Z(�Ln[d])(�L_[) + \[�}3�qsn[d]_X](�Ln[d])(�L_[) + ℎ� cZ\((�Ln[d])_[3n[d](�L_X))e(�Ln[d])(�L_[) +Zn[~]�(�Ln[d])(�L_[) + �-√� + (1 − #)-√�h(�)j + \klmZ(�Ln[d])(�L_[) +\[�o_[d]3�p(�Ln[d])_[3�qln[d]_X](�Ln[d])(�L_[) + ℎ
 c Z\r(�Ln[d])(�L_[) − mZ\�r(�Ln[d])(�L_[) + (mL�)Z� j,              (1) 

subject to +� ≤ �.  
4. Solution Technique 
Taha [24] discussed how to solve the optimum solution of nonlinear programming problem subject to 
inequality constraints by using the Kuhn-Tucker conditions. The development of the Kuhn-Tucker 
conditions is based on the Lagrangian method. Suppose that the problem (1) can be written as follow. 
       Minimize 
(�) = 0� (�, �, �, �),                         (2) 
       subject to �(�) = +� − � ≤ 0. 
A new function, i.e the Lagrangian function 0� (�, �, �, �, �) is formed by introducing Lagrangian 
multiplier �, then we have 0� (�, �) = 
(�) − ��(�)                

   = \aks3t3u(v)3[w3wx(�Ly)]z√v{(|)bZ(�Ln[d])(�L_[)  + \[�}3�qsn[d]_X](�Ln[d])(�L_[)  + \klmZ(�Ln[d])(�L_[) +                      

       \[�o_[d]3�p(�Ln[d])_[3�qln[d]_X](�Ln[d])(�L_[) + ℎ� cZ\I(�Ln[d])_[3n[d](�L_X)Je(�Ln[d])(�L_[) + Zn[~]�(�Ln[d])(�L_[) + �-√� +       (1 − #)-√�h(�)j + ℎ
 c Z\r(�Ln[d])(�L_[) − mZ\�r(�Ln[d])(�L_[) + (mL�)Z� j − �(+� − �).              (3) 

The Kuhn-Tucker conditions need � and � to be a stationary point of minimization problem which can 
be summarized as following: 

�∇
(�) − �∇�(�) = 0,��(�) = 0,                  �(�) ≤ 0,                     � ≥ 0.                                                                                   (4) 

By the method of Kuhn-Tucker conditions, consider the two cases � = 0 and � ≠ 0. 
i. For � = 0, from (3) and (4), we have �∗ = �\Imks3kl3mt3mu(v)J3m\(w3wx(�Ly))z√v{(|)�  ,           (5) 

        and  Φ(�∗) = 1 − �sZ(�Ln[d])(�L_[)�sZ(�Ln[d])(�Ly)3\(w3wx(�Ly)),                                          (6) 

        with 

        � = �ℎ� �\e [(1 − 0[�])�� + 0[�](1 − ��)] + n[~]� � �ℎ
 �\r − m\�r + (mL�)� (1 − 0[�])(1 − ��)�. 

The explicit general solution for Q and k cannot be obtained by solving equations (5) and (6) 
because the evaluation each of the expressions requires knowledge of the value of the other. The 
value of (�, �) can be obtained by adopting a similar graphical technique used in Hadley and 
Within [9]. The same numerical search technique also has been used in Lin [19, 20] and Kurdhi et 
al. [16, 17]. Therefore, the following iterative algorithm is established to determine the solution of 
(�, �, �, �) for � = 0. 
 
Algorithm 1 

a. Set � = 1 and � = 0. 
b. For each �>, < = 0,1,2, … , ;, perform (i) to (vii). 

(i) Start with �>� = 0, U(�>�) = 0.39894, and Φ(�>�) = 0.5. 
(ii) Compute h(�>�). 
(iii) Substituting h(�>�) into Equation (5) to evaluate �>�. 
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(iv) Utilizing �>� to determine Φ(�>�). 
(v) Check Φ(�>�) on standard normal table to determine �>� and then U(�>�). 
(vi) Repeat (i) to (v) until no change occurs in the values of �> and �>. These can be notated 

by �>∗ and �>∗. 

(vii) Compute �(�) using �>∗. 
c. Compute 0� (�, �>∗, �>∗, �>), < = 0,1,2, … , ;. 
d. Set 0� (�, �m∗ , �m∗ , �m∗ ) = ;<�>E",�,�,…,B70� (�, �>∗, �>∗, �>)8, then (�, �m∗ , �m∗ , �m∗ ) is the 

solution for fixed �. 
e. Set � = � + 1 and repeat step (b)-(d) to get 0� (�, �m∗ , �m∗ , �m∗ ) . 
f. If 0� (�, �m∗ , �m∗ , �m∗ ) ≤  0� (� − 1, �mL�∗ , �mL�∗ , �mL�∗ ), then go to step (e), otherwise go to 

step (g). 
g. Set 0� (�∗, �∗, �∗ , �∗)= 0� (� − 1, �mL�∗ , �mL�∗ , �mL�∗ ), then 0� (�∗, �∗, �∗ , �∗) is the 

solution. 
 

ii. For  � ≠ 0, from (3) and (4), we have  �∗ = − \(mks3mt3u(v)3k�)�mZX(�Ln[d])(�L_[) − \[w3wx(�Ly)]z√v{(|)�ZX(�Ln[d])(�L_[)                       (7) 

                                                  + �s� �\I(�Ln[d])_[3n[d](�L_X)Je(�Ln[d])(�L_[) + n[~]�(�Ln[d])(�L_[)�  

                           + ��� � \r(�Ln[d])(�L_[) − m\�r(�Ln[d])(�L_[) + (mL�)� �,  

�∗ = �\Imks3kl3mt3mu(v)J3m\(w3wx(�Ly))z√v{(|)� ,                           (8) 

 and Φ(�∗) = 1 − �sZ(�Ln[d])(�L_[)�sZ(�Ln[d])(�Ly)3\Iw3wx(�Ly)J,                                                 (9) 

 with 

                                       � = �ℎ� �\e [(1 − 0[�])�� + 0[�](1 − ��)] + n[~]� � 

                                   +�ℎ
 �\r − m\�r + (mL�)� (1 − 0[�])(1 − ��)� − ��+(1 − 0[�])(1 − ��).

  
With the same argument as case � = 0, the following iterative algorithm is established to determine 
the solution of (�, �, �, �) for � ≠ 0. 

 
 Algorithm 2 

a. Set � = 1. 
b. For each �>, < = 0,1,2, … , ;, perform (i) to (ix). 

(i) Start with �>� = 0.1,  �>� = 0, U(�>�) = 0.39894, and Φ(�>�) = 0.5. 
(ii) Compute h(�>�). 
(iii) Substituting h(�>�) into (8) to evaluate �>�. 
(iv) Utilizing �>� to determine Φ(�>�). 
(v) Substituting �>� and h(�>�) into (7) to evaluate �>�.  
(vi) Check Φ(�>�) on standard normal table to determine �>�, then U(�>�) and h(�>�). 
(vii) Substituting �>� and h(�>�) into (8) to evaluate �>�. 
(viii) Repeat (iv) to (vii) until no change occurs in the values of �>, �>, and �>. These can be 

notated by �>∗, �>∗, and �>∗. 
(ix) Compute �(�) using �>∗. 

c. Compute 0� (�, �>∗, �>∗, �>,  �>∗), < = 0,1,2, … , ;. 
d. Set 0� (�, �m∗ , �m∗ , �m∗ , �m∗ ) = ;<�>E",�,�,…,B70� (�, �>∗, �>∗, �>,  �>∗)8, then (�, �m∗ , �m∗ , �m∗ , �m∗ ) 

is the solution for fixed �. 
e. Set � = � + 1 and repeat step (b)-(d) to get (�, �m∗ , �m∗ , �m∗ , �m∗ ). 
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f. If 0� (�, �m∗ , �m∗ , �m∗ , �m∗ ) ≤  0� (� − 1, �mL�∗ , �mL�∗ , �mL�∗ , �mL�∗ ), then go to step (e), 
otherwise go to step (g). 

g. Set 0� (�∗, �∗, �∗ , �∗, �∗)= 0� (� − 1, �mL�∗ , �mL�∗ , �mL�∗ , �mL�∗ ), then  0� (�∗, �∗, �∗, �∗, �∗) is the solution. 

5. A numerical example 
In this section, an example is solved using the proposed solution in the previous section. The purpose is 
to illustrate the solution procedure and conduct some sensitivity analysis for important model 
parameters. Consider an integrated vendor and buyer inventory model with the following parameters: 

Production rate (�)     = 160,000 units/year 
Demand rate (�)     = 50,000 units/year 
Inspection rate (�)     = 155,200 units/year 
Setup cost for vendor (	�)    = $300/ production run 
Ordering cost for buyer (	�)    = $100/order 
Holding cost for vendor (ℎ
)    = $2/unit/year 
Holding cost for buyer (ℎ�)    = $5/unit/year  
Transportation cost (�)     = $25/delivery 
Inspection cost (��)     = $0.5/unit 
The cost of producing a defective item (��)  = $50/unit 
The cost of rejecting a non-defective item (��)  = $100/unit 
The buyer’s post sale failure cost (���)   = $200/unit 
The vendor’s post sale failure cost (���)   = $300/unit 
Buyer’s shortage cost (!)    = $25/unit 
Buyer’s marginal profit(!")    = $75/unit 
Buyer’s purchasing price (+)    = $10/unit 
Buyer’s maximum available budget to purchase products (�)  = $30,000/year. 

The lead time has three components with data shown in Table 1. Moreover, we assume that the defective 
percentage is uniformly distributed with p.d.f. as 


(�) = �1� , 0 ≤ � ≤ �;0, otherwise.  
 

Table 1. Lead time data. 
 

Lead time 
component, < Normal duration, => 

(days) 
Minimum duration, ?> (days) 

Unit crashing cost, �> 
(days) 

1 20 6 0.4 
2 20 6 1.2 
3 16 9 5.0 

 
By the method of Kuhn-Tucker conditions, consider the two cases 1) � = 0 and 2) � ≠ 0. Table 2 shows 
the solutions of �, �, �, �, �, and the minimum integrated inventory total cost 0�  for � = 0. 

 
Table 2. The solutions for � = 0. 

 � � � 
(weeks) 

� 
(unit) 

�(�) 
(unit) 

+� − � 0� (. ) 
($) 

0 1 8 2860.37 2.47194(7702.00) -1396.26 325244.74 
0 2 8 2066.32 2.58600(7702.45) -4336.79 323597.14 
0 3 8 1710.55 2.65040(7702.70) -12894.50 323432.15 
0 3 8 1495.70 2.69540(7702.88) -10043.00 323663.70 
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From Table 2, we obtain �∗ = 3 times, �∗ = 8 weeks, �∗ = 1710.55 units, �∗ = 2.65040, � =7702.70 units, and the minimum total expected annual cost is $323432.15. We also have +� − � =−12894.50 < 0,  then the lot size satisfy the budget constraint. The Kuhn-Tucker conditions are 
satisfied, so the solution is optimal and feasible. Table 3 shows the solutions of �, �, �, �, �, and the 
minimum integrated inventory total cost 0�  for � ≠ 0. From the table, we get �∗ = 0.190555, �∗ = 1 
times, �∗ = 8 weeks, �∗ = 5119.92 units, �∗ = 2.25670, � = 7701.16 units, and the minimum total 
expected annual cost is $323992.96. However, the lot size does not satisfy the budget constraint, that 
is +� − � = 21199.22 > 0. Hence, the solution is not feasible. 

 
Table 3. The solutions for � ≠ 0. 

 � � � 
(weeks) 

� 
(unit) 

�(�) 
(unit) 

+� − � 0� (. ) 
($) 

0.190555 1 8 5119.92 2.25670(7701.16) 21199.22 323992.96 
0.250710 2 8 3973.81 2.35230(7701.53) 9738.11 324329.39 
0.306326 3 8 3398.39 2.40981(7701.76) 3983.90 325679.13 

 
 In order to study how the parameters affect the integrated optimal solution, the sensitivity analyses 
for transportation cost (�), vendor’s holding cost (ℎ
), buyer’s holding cost (ℎ�), upper limit of defective 
percentage (�), probability of Type I error (��), and probability of Type II error (��) are performed.  

Table 4 shows the optimal solutions for different transportation costs. When the transportation cost 
increases, the joint total cost also increase. The percentage increase in joint total cost is 0.05%. We may 
also observe that increasing in transportation cost, will increase the order quantity and decrease the 
reorder point. The smaller the transportation cost up to $10, the larger the cost reduction of the integrated 
model in comparison to independent decision is. 
 

Table 4. Optimal solution for different transportation cost. 
 � 

($) 
� 

(weeks) 
� 
 

� 
(unit) 

� (�) 
(unit) 

0�  
Independent ($) 

0�  
Integrated ($) 

Cost 
reduction ($) 

5 8 3 1632.97 2.6660 (7702.76) 322826.05 322794.44 31.61 
10 8 3 1652.71 2.6620 (7702.75) 322979.18 322936.44 42.74 
15 8 3 1672.21 2.6580 (7702.73) 323132.31 323117.01 15.30 
20 8 3 1691.49 2.6542 (7702.72) 323285.25 323275.47 9.78 
25 8 3 1710.55 2.6504 (7702.70) 323437.83 323432.15 5.68 

 
Table 5 shows the optimal solutions for different vendor’s holding cost per unit. From the table, one 

can see that the higher the vendor’s holding cost is, the greater the joint total cost is. The percentage 
increase in joint total cost is 0.40%. One can also see that when the vendor’s holding cost decreases, it 
is more profitable to decrease the order quantity and to deliver the items more frequently from the vendor 
to the buyer. The greater the vendor’s holding cost up to $8, the larger the cost reduction of the integrated 
model in comparison to independent decision is. 

 
Table 5. Optimal solution for different vendor’s holding cost per unit. 

 ℎ
 
($) 

� 
(weeks) 

� 
 

� 
(unit) 

� (�) 
(unit) 

0�  
Independent ($) 

0�  
Integrated ($) 

Cost 
reduction ($) 

2 8 3 1710.55 2.65040 (7702.70) 323437.83 323432.15 5.68 
4 8 2 1818.33 2.62970 (7702.62) 325591.62 325526.24 65.38 
6 8 1 2568.64 2.51013 (7702.15) 328187.55 327038.22 1149.33 
8 8 1 2452.67 2.52640 (7702.22) 329288.64 327869.74 1418.90 

10 8 1 2351.09 2.54120 (7702.74) 329839.19 328665.40 1173.79 
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Table 6 shows the optimal solutions for different buyer’s holding cost per unit. One can see that the 
smaller the buyer’s holding cost is, the greater the advantages to deliver the items more rarely from the 
vendor to the buyer. Moreover, when the buyer’s holding cost increases, the joint total cost also increase. 
The percentage increase in joint total cost is 0.82%.  
 

Table 6. Optimal solution for different buyer’s holding cost per unit. 
 ℎ� 

($) 
� 

(weeks) 
� 
 

� 
(unit) 

� (�) 
(unit) 

0�  
Independent ($) 

0�  
Integrated ($) 

Cost 
reduction ($) 

5 8 3 1710.55 2.65040 (7702.70) 323437.83 323432.15 5.68 
10 8 4 1219.21 2.52840 (7702.22) 327036.45 327027.61 8.84 
15 8 5 981.97 2.46144 (7701.96) 329769.97 329757.70 12.27 
20 8 6 838.54 2.41455 (7701.84) 332056.19 332056.83 0.64 
25 8 7 741.07 2.37813 (7701.69) 334094.30 334091.79 2.51 

 
Table 7 shows the optimal solutions for different probability of Type I error. One can see that             

when the probability of Type I error increases, both the buyer and the vendor incur a higher joint total 
annual cost. The percentage increase in joint total cost is 82.16%. The smaller the probability of Type I 
error up to 0.08, the smaller the cost reduction of the integrated model in comparison to independent 
decision is. 
 

Table 7. Optimal solution for different probability type I error. 
  �� 

 
� 

(weeks) 
� 
 

� 
(unit) 

� (�) 
(unit) 

0�  
Independent ($) 

0� (. ) 
Integrated ($) 

Cost 
reduction ($) 

0.04 8 3 1710.55 2.65040 (7702.70) 323437.83 323432.15 5.68 
0.08 8 3 1757.22 2.65560 (7702.72) 554497.57 554492.15 5.42 
0.12 8 3 1805.93 2.66140 (7702.75) 806567.65 806562.20 5.45 
0.16 8 3 1856.77 2.66772 (7702.77) 1082649.96 1082644.15 5.81 
0.20 8 3 1909.78 2.67470 (7702.79) 1386346.88 1386340.27 6.62 

 
Table 8 shows the optimal solutions for different probability of Type II error. From the table, we 

may see that the probability of Type II error has a similar impact as the probability of Type I error. When 
the probability of Type II error increases, the joint total cost also increases. The percentage increase in 
joint total cost is 6.57%. The smaller the probability of Type II error up to 0.12, the smaller the cost 
reduction of the integrated model in comparison to independent decision is. 
 

Table 8. Optimal solution for different probability type II error. 
  �� 

 
� 

(weeks) 
� 
 

� 
(unit) 

�(�) 
(unit) 

0�  
Independent ($) 

0�  
Integrated ($) 

Cost 
reduction ($) 

0.04 8 3 1710.55 2.6504(7702.7) 323437.83 323432.15 5.68 
0.08 8 3 1709.97 2.6505(7702.7) 344701.18 344695.41 5.77 
0.12 8 3 1709.39 2.6506(7702.7) 365964.52 365958.66 5.58 
0.16 8 3 1708.81 2.6507(7702.7) 387227.87 387221.92 5.95 
0.20 8 3 1708.23 2.6508(7702.7) 408491.22 408485.17 6.05 

 
Table 9 shows the optimal solutions for different upper limit of defective percentage. From the table, 

we may see that when the upper limit of defective percentage increases, the joint total cost and the order 
quantity tend to increase. The percentage increase in joint total cost is 25.78%. The smaller the upper 
limit of defective percentage up to 0.08, the smaller the cost reduction of the integrated model in 
comparison to independent decision is. 
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Table 9. Optimal solution for different upper limit of defective percentage. 
 � 

 
� 

(weeks) 
� 
 

� 
(unit) 

� (�) 
(unit) 

0�  
Independent ($) 

0�  
Integrated ($) 

Cost 
reduction ($) 

0.04 8 3 1710.55 2.65040 (7702.70) 323437.83 323432.15 5.68 
0.08 8 3 1732.57 2.65300 (7702.71) 401606.19 401600.57 5.62 
0.12 8 3 1755.06 2.65580 (7702.72) 483101.76 483096.14 5.62 
0.16 8 3 1778.04 2.65860 (7702.74) 568141.59 568135.91 5.68 
0.20 8 3 1801.50 2.66162 (7702.75) 656961.98 656956.16 6.82 

 

6. Conclusions 

In this paper, we propose the two-echelon supply chain inventory model by considering shortage 
backlogging, imperfect quality items, inspection errors, lead time, budget capacity constraint, and 
stochastic demand. An analytic solution procedure is developed to determine the optimal number of 
shipments, the size of each shipment, the reorder point, and the lead time. An investigation of the effects 
of six important parameters (transportation cost, vendor’s holding cost, buyer’s holding cost, upper limit 
of defective percentage, Type I error, and Type II error) on the optimal solution is also made. Numerical 
results show that (1) the joint total annual cost is more sensitive to the variation of the upper limit of 
percentage defective, Type I error, and Type II error; (2) the cost reduction of the integrated model in 
comparison to  independent decision can be increased by decreasing the transportation cost; or by 
increasing the upper limit of defective percentage, the probability of Type I and II errors, and the 
vendor’s holding cost. 

Possible extensions for future research could be by considering learning in production. In this case, 
the vendor experiences learning in the production process while some of the units are defective. The 
effect of learning in buyer’s inspection errors on supply chain cost also can be investigated. Furthermore, 
the other possibility is considering the alternative inventory models such as periodic review.  
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