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Abstract. The objective of this paper is to give an overview on sintering process of WC-Co cemented 

carbides in metal injection molding technology. Metal injection molding is an advanced and promising 

technology in producing cemented nanostructured carbides. Cemented tungsten carbide (WC-Co) hard 

metal is known for its high hardness and wear resistance in various applications.  Moreover, areas 

include fine grained materials, alternative binders, and alternative sintering techniques has been 

discussed in this paper. 
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1.  Introduction 

WC-Co cemented carbides, also referred to as hard metal, exhibit excellent combination of high 

strength and wear resistance in making the hard metal as preferred material for wear parts and cutting 

tools in machining since decades ago. In the production of small and complex part in bulk quantity, 

Metal injection Molding (MIM) has proven to be a promising technology that can produces cemented 

nanostructured carbides via MIM, with the application of finer grain size of particles below 1 µm, 

tailored with grain growth inhibitors.  Considering the elevated temperature working application, 

grades cubic carbides such as vanadium carbide, VC, chromium carbide, Cr3C2, tantalum carbide, 

TaC, titanium carbide, TiC and Niobium Carbide, NbC are proposed by authors in journals. The main 

challenge in sintering stage, whereby to retain small average grain size in the sintered product is 

difficult because of very high sintering activity of nanopowders. The microstructure of sintered part 

plays important role in determining mechanical properties such as transverse rupture strength (TRS), 

hardness and fracture toughness of the cemented carbide. Moreover, the study on the mechanism of 

different sintering method, liquid phase sintering (LPS), hot isostatic pressing sintering (sinter HIP) 

and microwave sintering (MW) has been studied in this paper.  
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2.  Metal Injection Molding (MIM) 

Metal Injection Molding (MIM) is a newly developed technology to form metals and alloys into 

desired shape. MIM is a combination of conventional plastic injection molding and powder 

metallurgy. This process consist of four main steps which is mixing, injection molding, debinding and 

sintering as shown in Figure 1. During the mixing process, the metal powder is mixed with a binder at 

a selected volume ratio to form a homogenous feedstock. Binder is the key component in MIM that 

supplies the metal powders flow ability and formability necessary for molding [1-2]. The attained 

feedstock from mixing step is molded to produce a “green” compact and the binders hold particles 

together. During debinding stage, “green” compact is processed by partially removing the binder 

component to produce “brown” compact. Finally, sintering process is performed to give required 

mechanical properties for the sintered product also known as sintered body. Thus, the development 

and improvement of binders results in faster debinding procedures, cost reduction and less 

environmental defects [2]. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of metal injection molding, showing the conceptual flow from powder to 

final structure [2]  

  
 

Binders in MIM should have good flow characteristics, good debinding characteristics and 

favorable interactions with the metal powder used. Previous works by Prakash [3] have shown that 

cemented carbides with certain Fe-Ni-Co binder compositions can be of interest to the hard metal 

industry, in particular for applications where improved fatigue strength and toughness are required [4]. 

One main drawback in Fe-Ni-Co binder cemented carbides is also the more difficult control of the 

carbon balance, in order to achieve defect free microstructures; as well as the tendency of Fe-alloys to 

form martensite and react with the Fe-based workpieces during machining operations. Nickel is an 

interesting alternative binder, not only because of its good wettability to WC but also for a much better 

performance of WC-Ni cemented carbides in oxidation and corrosion conditions than that of WC-Co 
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cemented carbides. However the mechanical properties (hardness and strength) of WC-Ni cemented 

carbides are relatively inferior to those of WC-Co. The major drawback of Ni-based cemented 

carbides is their reduced mechanical strength [5].  

Ni-Co-Cr, Ni-Si and Fe-Ni binders were also investigated. Aristizabal et al. [6] reported that 

despite the lower hardness of cemented carbides with Ni-Co-Cr binders, they presented the same wear 

performances as Co based cemented carbides in wear applications. They argue that this effects is 

related to the higher oxidation resistance of Ni-Co-Cr compared to Co binders and the formation of 

continuous oxide tribofilms which reduced friction coefficients for grade with higher binder content. 

Correa et al. [7] investigated the effects of adding Si to Ni binders in cemented carbides for wear parts. 

They concluded that there is a solution strengthening of the nickel binder by silicon, which improved 

significantly the mechanical properties of the Ni-Si based cemented carbides, giving flexural strength 

and fracture toughness higher than those observed in similar WC-Co.  

Good rheological properties of binder and feedstock are one of the keys to get green parts 

with uniform density and no defect, besides obtaining a successful debinding and sintering process and 

high quality products [8]. Even though the binder acts as a temporary vehicle to support metal powder 

especially during mixing and injection molding, but its role is very important. Its behavior especially 

flow properties during molding, is the most important criterion in developing the new binder system to 

make sure no defect occurs during molding. It was reported that palm stearin (PS) had a good attribute 

as a binder system together with polyethylene (PE) [9-11]. The melting point of the PS binder was 

originally 61ºC, whereas that of PE was 127 ºC. The mixing and molding temperatures should be set 

above the melting point of the highest melting component of the binder to ensure that all the binders 

will melt and that the mold will be homogenously filled with the feedstock. Mold temperature should 

be kept below the melting point of the minor binder to prevent the molded part from sticking into the 

mold cavity. The temperature should not be raised too quickly to prevent defects, such as bubbles and 

cracks [12]. Besides that, a wax based multi-component binder system that contained paraffin wax 

(PW) as a major component to improve its rheological properties and wettability, a low-density 

polyethylene (LDPE) as a backbone polymer to increase the strength of green parts [13-16].  
 

 

3.  Nanostructured WC-Co 

Nanostructured cemented carbides are the most researched powder metallurgy materials but their 

potential applications have not yet been defined. Nanostructured cemented carbides are characterized 

by a unique combination of very fine grained homogenous microstructure and good mechanical 

properties. Mechanical properties are directly dependent on the developed microstructure in the 

sintered parts, which is governed by several factors which is Tungsten Carbide (WC), crystallite size, 

and mean free path of the binding phase and the contiguity of WC grains [14-16]. Improvement of 

hardness and toughness of cemented carbides can be achieved with a decrease in WC grain size to 

nanoscale. Thus, considerable efforts have been made over the past years to research nanostructured 

cemented carbides to draw certain conclusions about hardness and toughness behavior. Nanostructured 

cemented carbides are produced from near nano- and nano sized WC starting powders. Biggest 

weakness of sintering near nano- and nano scaled powders is the retaining of a small average grain 

size in the sintered product [17-19].  

 

4.  Metal Injection Molding of WC-Co 

Cemented tungsten carbides (WC-Co) consists of tungsten carbides grains embedded in a metal binder 

phase. WC-Co have been widely used as machining, cutting, mining and drilling tools, as well as wear 

parts and chip-less forming tools, due to their extremely high hardness, excellent wear resistance and 

good toughness [20]. In addition, the application of the metal binder phase provides an economical 

and viable method to produce cemented tungsten carbide components – liquid phase sintering. 
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However, it was known for long time that cemented tungsten carbides with high cobalt contents had 

high toughness and low hardness and those with low cobalt content had high hardness and low 

toughness [21, 25-26]. Therefore, the fracture toughness is improved at the expense of hardness, and 

vice versa. It has been shown that the ultrafine grained WC-Co materials with the submicron or Nano-

WC grain size have enhanced mechanical properties such as hardness, strength and wear resistance, 

compared to the traditional coarse grained WC-Co materials.  

Although the ultrafine cemented carbides (0.1 – 0.6 µm average size) has the higher hardness 

and wear resistance, the fracture toughness of ultrafine hard metals is inferior to that of coarse grained 

cemented carbides, which can impact the application on shock environment [27-29]. With the design 

of WC grain size and distribution in ultrafine hard metals can improve the fracture toughness of 

ultrafine hard metals obviously, and achieve the combination of proper hardness and fracture 

toughness in ultrafine WC-(micron WC-Co) systems [30-32]. In principle, many factors will affect the 

microstructures and mechanical properties of WC-Co materials during the fabrication process, 

including the shape and granularity of the raw WC particles, composition of the WC-Co powders, 

selection and content of the grain growth inhibitors, milling conditions and sintering conditions [33-

36]. Chen et al. [37] studied that the effect of the matching of coarse and fine powders on the 

mechanical properties and microstructures of WC-10Co cemented carbides, take to obtain different 

granularity levels of WC powders through the air classification method, mixed with the Co powder in 

appropriate proportion, and achieve the double grain sized WC cemented carbides, the alloy obtained a 

good performance in the drilling experiments.  

Li et al. [37] studied that the influence of WC particle size on WC-Co cemented carbides 

fracture toughness, analyses the mechanism of particle size effect on fracture toughness of cemented 

carbides. However, the microstructure and fracture mechanism of the ultrafine WC-(micron WC-Co) 

hard metals have not been investigated systematically. Palm stearin suitability is based on the 

rheological behavior of the feedstock after being mixed with PS-PE binder system at the powder 

loading of 59, 61 and 63% vol. Based on the rheological properties, it was concluded that all the MIM 

feedstocks shows a pseudo plastic behavior and suitable for MIM, except some feedstocks from the 

high powder loading 63% at high temperature, that shows dilatants behavior [11]. The thermal and 

physical analyses of feedstock discussed that the critical powder loading spotted for the WC-Co 

powder is 65%. Thus, the rheological properties of the optimal feedstock with powder loading of 61% 

show good pseudo plastic behavior, which is suitable for injected molding [12]. 
 

5.  Grain Growth Inhibitor (GGI) 

One of the biggest problems of sintering near nano- and nano scaled powders is the retaining of a 

small average grain size in the sintered product [24]. Many attempts to achieve nanostructured 

cemented carbides failed because of very high sintering activity of WC Nano powders. For that reason 

the addition of grain growth inhibitors, GGI, is required. Small amounts of GGI’s are added to starting 

powders [38]. The most common ones are vanadium carbide, VC, chromium carbide, Cr3C2, tantalum 

carbide, TaC, titanium carbide, TiC and niobium carbide, NbC. Their primary effect is to retain the 

particle size of starting powders in the sintered product, meanwhile, not only influencing the 

mechanical properties; increasing the value of hardness at room temperature, but also affecting the 

toughness, hardness and creep resistance at elevated temperatures [39]. 
 

6.  Sintering Process 

Since the first WC-Co hard metals have been invented and produced more than 70 years ago, activity 

in research and development laboratories has been directed to the improvement of the characteristics 

of these alloys and to optimize them for the ever increasing utilization possibilities. Particularly in the 

field of machining – a main utilization field of hard metals – during the further development of the 

materials to be processed, new hard metal alloys were continuously developed, which were 
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characterized by an increase in not only the wear resistance of the cutting bodies, but also their 

strength [40]. The need for hard metals with improved properties, particularly increased hardness and 

strength coupled to increased ductility and toughness, has focused attention on the development of 

grades with finer and finer – grained powders and cemented carbides.  

Nowadays, submicron and ultrafine grades of WC – Co, with a WC grain size of 0.4 – 1.0 

µm, still dominate the market for cemented carbides. Essentially, they are desired to be sintered from 

WC – Co superfine powder with a WC grain size up to 0.3 µm or nanocomposite powder with a grain 

size below to 0.1 µm (100nm) [41-42]. Sintering of cemented carbides is conducted most commonly 

in vacuum [43-45]. But one of the crucial aspects in fine-grained hard metal sintering is the strong 

tendency of the very fine WC grains to coarsen, due to their high interface energies as well as 

differences in individual grain sizes, constituting the driving force for the growth process.  

Many researchers developed novel approaches to control rapid growth, such as adding grain 

growth inhibitors (VC, Cr3C2, TaC or their combinations), conducting the sintering at lower 

temperature with the aid of plasma pressure compaction (P2C) [46], spark plasma system (SPS) [47] 

plasma activated sintering (PAS) [48], pulse current process [43], microwave process [43] and hot 

isostatic pressing (Sinter + HIP or sinter hip / SIP) [43]. Packed particles heated near their melting 

temperature bond together by sintering. As diffusion accelerates at higher temperatures, sintering is 

manifested by bonding between contacting particles. Sintering occurs over a range of temperatures, 

but is accelerated as the particles approach their melting range. For solid – state sintering, it is 

appropriate to think of sintering with respect to the melting temperature. Snow sinters to form ice at 

temperatures near – 15 ºC, while hard metals requires temperatures in excess of 1000 ºC [49].  
 

6.1.  Liquid Phase Sintering (LPS) 

Liquid phase sintering (LPS) is applied to alloys and composites that melt over a range of 

temperatures. In the typical situation, the solid grains are soluble in liquid. This solubility causes the 

liquid to wet the solid, providing a capillary force that pulls the grains together. At the same time, the 

high temperature softens the solid, further assisting densification. High – diffusion rates are associated 

with liquids, giving fast sintering or lower sintering temperatures. Important technical advances in 

LPS came in the 1930s with the development of several materials; cemented carbides (WC–Co), 

porous bronze (Cu–Sn), tungsten heavy alloys (W-Ni-Cu), copper steels (Fe-Cu-C), and cermet’s 

(TiC-Fe) [49].  

 

6.1.1.  The mechanism of LPS         

A conceptual view of the events taking place, as sketched in Figure 2 for the case of two mixing 

powders. The solid grains undergo solid-state sintering during heating. Depending on the solid-liquid 

solubility relations, different microstructure evolution pathways are possible. The newly formed 

liquid penetrates between the solid grains, dissolves the sinter bonds, and induces grain 

rearrangement. Further, because of solid solubility in the liquid, the liquid improves transport rates 

responsible for grain coarsening and densification. The surface energy associated with pores leads to 

their annihilation, while there is progressive microstructure coarsening and bonding to increase 

rigidity. The LPS are ideal for densifying hard materials that cannot be fabricated using other 

manufacturing approaches. The WC-Co system is a prime example, where the eutectic at 1310 ºC 

enables the bonding of micro meter size WC grains into a dense component, such as drill or cutting 

insert. However, the common form of LPS is persistent LPS, where at the sintering temperature the 

solid is soluble in the liquid. On cooling, the liquid solidifies to produce a composite microstructure 

with tailored properties [50-53].  
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Figure 2: A schematic of the microstructure changes during LPS, starting with mixed powders and 

pores between the particles. During heating the particles sinter, but when a melt forms and spreads the 

solid grains rearrange. Subsequent densification is accompanied by coarsening. For many products 

there is pore annihilation as diffusion in the liquid accelerates grain shape changes that facilitates pore 

removal [49]. 

 

 

After LPS, the microstructure consists of the solid grain with a solidified liquid network, and 

possibly residual pores are retained for lubrication, frangibility, or filtration attributes. Thus, liquid 

phase sintered microstructures exist in several variants with differences in the amount, size, shape and 

distribution of the phases. Accordingly, substantial performance differences result, especially in 

properties such as hardness, strength, and elastic modulus. This is especially true for the WC – Co 

cemented carbides. The study of LPS focuses on linking composition, processing, and properties, with 

recent attention to improved dimensional precision. The glue between these factors is in the 

microstructure. A homogenous green structure greatly improves the LPS response. Most effective is 

placement of the liquid phase on the interface between the solid grains [54-55].  

 

6.2.  Microwave Sintering (MS) 

Microwave sintering (MS), as a novel technology, has been employed in powder metallurgy for the 

last few years [56]. It has several advantages, including volumetric heating, non-thermal effect, 

selective heating over the conventional method [57]. These typical characteristics are beneficial to 

prepare materials such as accelerated heating rate, shortened processing cycle, high energy efficiency, 

and being environmentally friendly [58-59]. The microstructures can be improved greatly in terms of 

fine grain size, uniform cobalt distribution for WC-Co alloys, which can enhance the mechanical 

properties [60]. It is reported that the microwave sintered sample shows almost no grain growth and 

the cobalt phase dissolved nearly no tungsten and the sample always showed enhanced mechanical 
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properties and better resistance towards both erosion and corrosion [61]. It is well known that carbon 

content plays an important role in the morphologies and microstructures.  

In conventional sintering processing, the vacuum was employed to avoid the atmosphere 

effect on carbon content in WC – Co alloy. Nevertheless, vacuum condition is difficult to achieve in 

microwave furnace because of arc discharge at higher temperature (≥ 1400 ºC) [62]. Therefore, the 

atmosphere such as Nitrogen, N2, Argon, Ar and Hydrogen, H2 are widely employed in microwave 

sintering [63]. It can be seen that the sintering atmosphere has an important effect on the 

microstructures. The carbon content in cemented carbide plays an important role to the morphologies 

and microstructures. Moreover, the carbon activity in the microwave furnace chamber is expected to 

be extremely sensitive because of many factors such as moisture level, purity of the protective 

atmosphere, oxygen content in raw materials, etc [64].  
 

 

6.3.  Comparison of Microwave Sintering (MS) and Conventional Sintering 

Microwave sintering of cemented carbides like WC – Co also has been investigated since 1991 after 

pioneering work of Cheng [65-67] and thereafter by Porada [68-70]. Breval [67] et al. investigated on 

the microwave sintering of 0.1 – 1µm sized WC particles with cobalt as binder and compared the 

results with conventional sintering of the same powders. They reported that the microwave sintered 

sample hardly exhibits any growth and the cobalt phase does not reveal any dissolution of tungsten 

whereas in the conventionally sintered one. Porada and here group showed that the microwave 

reaction sintering of W, C, and Co powders yielded sintered WC-6Co compacts with fine and uniform 

microstructure (with an average grain size of 0.6µm) which exhibited a 10% increase in hardness 

values in comparison to tools made by conventional route [68-70].  

As is well known, microwave sintering greatly reduces the time as well as the energy 

expended when compared to conventional sintering due to the inherent different in the heating 

mechanism of the two methods and the possibility of achieving very fast heating rates in the former. A 

typical comparison of the sintering schedules as depicted in Figure 3 shows that there is considerable 

reduction in the sintering time when microwaves are employed for heating the sample; 165 min for 

microwave sintering as compared to 330 min for conventional sintering. Figure 4 shows the 

photographs of the compacts before and after microwave sintering.  

Initially, the microwave sintering in case of microcrystalline powder was carried out at two 

different temperatures, 1450 and 1550 ºC, to find out at what temperature, a higher density could be 

achieved. It was found that at only a temperature set point of 1550 ºC, a considerably higher density 

was obtained, though the sample densified well at 1450 ºC when sintering was carried out 

conventionally. In case of nanocrystalline powder, different temperatures from 1100 ºC up to 1550 ºC 

were employed to verify if a well sintered sample could be obtained at a much lower temperature than 

samples sintered conventionally. However, as seen from Figure 5, microwave sintering of 

nanocrystalline powders also did not yield samples of higher density unless the temperature set point 

was 1550 ºC, and this was true whether the sample was a compact made from microcrystalline 

powders or nanocrystalline powders. This is due to the expectation to observe a microwave effect, due 

to which sintering could be expected to take place at a lower temperature and which could be more 

pronounced especially in case of nanocrystalline powders [71].  
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Figure 3: Comparison of sintering schedules employed for conventional and microwave processing 

[71] 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Photographs of the WC–12Co compacts derived from microcrystalline powders after 

microwave sintering in a 90N2–10H2 atmosphere, before (left hand side) and after (right hand side) 

sintering [71]. 

 

 

 

In all the microwave sintered samples, the periphery was seen to be less sintered when compared to 

the center of the sample. This aspect in the first instance was observed as a porosity difference 

between the periphery and center. Microwave processing is well-known to cause a volumetric heating 

where the heating takes place uniformly within the sample since the process is an energy conversion 

(microwave to heat energy) unlike a conventional heating, where heating takes place by energy 

transfer from the heating elements to the sample [72].  
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Figure 5: SEM image of microwave sintered nanocrystalline powder processed at different 

temperature set points; (a) 1250 ºC. (b) 1350 ºC (c) 1450 ºC and (d) 1550 ºC [72] 
 

 

7.  Conclusion 

Based on this study it can be concluded that, metal injection molding (MIM) is newly developed 

technology to form metals and alloys into desired shape. Since this MIM technology is growing 

rapidly in Malaysia, hence it will give a good prospect for Malaysian Industries to get involved in this 

technology and share the benefits. Besides that, this technology helps through characterization of 

metal powders and binder components. The addition of grain growth inhibitor (GGI) to the starting 

powder also been reviewed and the role of GGI is to increase the value of hardness, fracture toughness 

and creep resistance at certain temperature. The use of microwave for sintering of green compacts 

during powder metallurgy process is emerging as a novel and innovative technology with many 

advantages over conventional sintering. The comparison of microwave sintering over conventional 

sintering has been discussed.   
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