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Abstract. The influence of labyrinth seal structure on leakage behaviour in a reciprocating 
compressor was addressed in this paper. The effects of the main labyrinth seal parameters, such 
as tooth angle, sealing clearance, and cavity depth, were compared using FLUENT software 
and iterative calculation results. Simulations of the sealing process with the influence of 
internal structure size of labyrinth seal performance in different structures were conducted to 
explore the characteristics of fluid flow. By comparing the simulations of leakage of fluid-
structure interaction and experience formula calculations, the results revealed the validity of 
the fluid-structure interaction analysis method. The CFD analysis method for fluid-structure 
coupling was adopted to verify the theory of labyrinth seals and for the design of a labyrinth 
structure. 

1. Introduction 
As a kind of non-contact dynamic seal, labyrinth seals are composed of a series of throttling backlash 
and expansion cavities. A labyrinth seal reduces the leakage rate by increasing the local kinetic energy 
loss of fluid flow to improve the sealing performance. Widely used in centrifugal compressors, turbine 
coolers, turbine expansion engines, and other mechanical applications, labyrinth seals do not need 
lubrication, offer stable and reliable performance, and are convenient [1-4]. Through the variation of 
cavity expansion, local kinetic energy of the fluid flow is incrementally lost in a labyrinth seal. 
Currently, due to the strict requirements of the materials, difficulty of manufacturing, high standards 
of mechanical processing, and assembly accuracy, labyrinth seals are produced by only a small 
number of companies, such as Swiss Sulzer, throughout the world. The Sulzer company has produced 
labyrinth compressors since 1935, accounting for about ninety percent of the world market production. 
Japan Steel Works, Germany’s Linde, and only a few other companies produce labyrinth compressors, 
and their products are mainly used to satisfy the internal demands of their enterprise groups. How to 
effectively reduce leakage is one of the key technical problems afflicting labyrinth sealing technology. 
To date, many research projects have made progress on design optimization of labyrinth compressors, 
but the mechanism of labyrinth seals, which play a decisive role in the production capacity of 
labyrinth compressors, has not yet been perfected. 

Presently, calculating leakage rates is conducted by utilizing FLUENT software to analyze flow 
fields independently [5-7]. Research methods mainly involve CFD numerical analysis, thermodynamic 
theory analysis, leakage measurement and flow visualization, and the analysis method combining 
numerical simulation and experimental analysis. Toff adopted the FDM numerical analysis method to 
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perform numerical simulations on incompressible flow fields with a straight-through labyrinth seal 
structure, and Versteeg et al. used the same approach [8, 9]. Rhode and Bobolink first simulated [10]. 

2. Selection of leakage rate algorithm 
There are several methods for calculating leakage rates of labyrinth seals including the Martin, 
Sodalist, Egli, Dumbarton, and Vermes calculation methods. These algorithms, based on specific types 
of labyrinth seals, are suitable for different applications. Presently, geometric analysis of labyrinth 
seals is primarily based on two- or three-dimensional flow motion equations, which simplifies the 
calculation model of seal flow fields. As such, it is not possible to accurately obtain the internal flow 
field of a seal and pressure field distribution under the interplay of an actual flow field and solid wall. 
There is interaction between the piston reciprocating movement and gas, which means that the piston 
reciprocating movements affect the pressure distribution of the gas flow field. Meanwhile, the internal 
flow field structure is also changed by the gas forces on the piston. Consequently, the pressure 
distribution of the gas is influenced. Because there is the potential for significant errors if these aspects 
are studied separately, combining the two problems in fluid-solid coupling can obtain more accurate 
results. 

The flow discipline of leakage fluid inside the seal cavity follows the mass, energy, and momentum 

conservation formulas. The following general form can be derived by the general variable   [8]: 
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The formula can be expanded as follows: 
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where ,  , and S are the general variable, generalized diffusion coefficient, and generalized source 
term, respectively. 

In light of the general equation, the following iterative calculation approach was applied to obtain 
an equation for theoretical leakage rates of labyrinth seals [9]: 
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where A is the cross-sectional area, K is the gas adiabatic index, n is the sealing teeth number; h is the 
gap width of the sealing tooth mouth, L is the gap of the two adjacent teeth, and i is the pressure ratio. 

Because the kinetic energy overload effect of a staggered labyrinth seal is smaller, ri was set as 1 
directly. 
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angle, the conversion between the kinetic energy and heat energy in the expansion cavity was 
relatively weak, and the leakage rate increased significantly at that moment. In conclusion, both the 
energy dissipation of the subject vortex in the expansion cavity and energy exchange at the throttling 
gear had significant effects on the improvement of the seal leakage rate, and the former was more 
apparent. Different tooth profile angles of labyrinth seal leakage are listed in Figure 8 along with 
simulation and iterative calculations. 

 

Figure 3. Turbulence kinetic energy and total 
mesh displacement nephogram with tooth angle of 
15°. 

Figure 4. Turbulence kinetic energy and total 
mesh displacement nephogram with tooth angle 
of 30°. 

  
Figure 5. Turbulence kinetic energy and total 
mesh displacement nephogram with tooth angle of 
45°. 

Figure 6. Turbulence kinetic energy and total 
mesh displacement nephogram with tooth angle 
of 60°. 

 

 
Figure 7. Turbulence kinetic energy and total 
mesh displacement nephogram with tooth angle of 
75°. 

Figure 8. Leakage rate of labyrinth seal with the 
degree of tooth angles. 

When the tooth angle was between 15° and 30°, the leakage decreased gradually, and between 30° 
and 60°, the leakage increased gradually. However, from 60° to 70°, the leakage increased sharply. 
The leakage was the lowest at the tooth profile angle of 30°. The major forms of fluid flow within the 
seal chamber were the main vortex and the jet, which were important factors resulting in energy loss. 
Energy loss was also related to the formation of small local vortexes in the shear layer of the strong jet 
and the merging primary vortex, jet impingement against the sealed wall, changes of jet direction, and 
other factors. When the jet flowed through the orifice, deflection flows directly impacted on the cavity 
wall, which caused kinetic energy loss; jet branches were thus produced. At the appropriate tooth 
profile angles, the jet velocity in the seal clearance decreased gradually with the degree of tooth angle, 
and most of the fluid energy dissipated completely after the long seal clearance. If the tooth angle was 
too wide, the flow velocity was accelerated into the cavity and the corner position, so the leakage rate 
decreased. 
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4.2. Comparison of leakage rate with the sealing clearance 
The size of the sealing clearance has significant effects on labyrinth seals. For labyrinth compressors, 
too-wide seal clearance increases leakage, and thus reduces the efficiency of the compressor. Too-
narrow seal clearance gives rise to difficulty in the manufacturing process, and the material 
performance requirements of labyrinth pistons are also strict. Figures 9-13 illustrate the turbulence 
kinetic energy and total mesh displacement nephogram for different sealing clearances. 

As the figures demonstrate, labyrinth seal leakage increased with the widening of sealing clearance. 
Because the wider sealing clearance affected the resistance of the labyrinth seal, the ability of gas to 
convert pressure energy to kinetic energy was weakened, and the speed at which it entered the seal 
cavity in jet form dropped. With the turbulent kinetic energy of the gas in sealed cavity weakened, the 
energy dissipation of the gas decreased, and consequently, the leakage rate increased. 

 

Figure 9. Turbulence kinetic energy and total 
mesh displacement nephogram (gap of 0.3 mm). 

Figure 10. Turbulence kinetic energy and total 
mesh displacement nephogram (gap of 0.4 mm).

Figure 11. Turbulence kinetic energy and total 
mesh displacement nephogram (gap of 0.5 mm). 

Figure 12. Turbulence kinetic energy and total 
mesh displacement nephogram (gap of 0.6 mm).

Figure 13. Labyrinth seal leakage for different sealing clearances. 

4.3. Effects of leakage rate on the cavity depth 
The configuration of fluid load can be affected by cavity depth, which changes the fluid leakage rate 
and the sealing effect. A smaller depth not only causes difficulty in the manufacturing process, but the 
performance requirement of labyrinth piston material is becoming more strict. Figures 14-19 illustrate 
pressure and von mises stress nephogram with different cavity depths. With a gradual increase of 
cavity depth, the wall deformation of the seal increased at first, then decreased to a certain point, and 
lastly, demonstrated a gradual increasing trend. It can be seen that the minimum leakage rate occurred 
at the cavity depth of 3.5-4 mm, during which time optimal sealing effect was obtained. When the 
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airflow through the throttling cavity, mainly by direct jet, and the flow with a certain angle entered the 
sealed cavity, a vortex inside the sealed cavity was generated, exacerbating the conversion from 
kinetic energy into heat energy, and causing the energy to dissipate. For a smaller cavity depth, most 
of the fluid was in the form of a jet flow, which did not easily form a vortex, and as a result, the cavity 
fluid was rendered nearly motionless. 
 

Figure 14. Turbulence kinetic energy and total 
mesh displacement nephogram (cavity depth of 
3 mm). 

Figure 15. Turbulence kinetic energy and total 
mesh displacement nephogram (cavity depth of 
3.5 mm). 

Figure 16. Turbulence kinetic energy and total 
mesh displacement nephogram (cavity depth of 
4 mm). 

Figure 17. Turbulence kinetic energy and total 
mesh displacement nephogram (cavity depth of 
4.5 mm). 

Figure 18. Turbulence kinetic energy and total 
mesh displacement nephogram (cavity depth of 
5 mm). 

Figure 19. Labyrinth seal leakage for different 
cavity depths. 

5. Conclusion 
A numerical simulation model was established in this paper using the CFD analysis method, and the 
effects of the main labyrinth seal parameters, including tooth angle, sealing clearance, and cavity 
depth, were researched. After comparing the leakage rates between the fluid-structure interaction 
simulation and the experience formula calculations, the results revealed the validity of the fluid-
structure interaction analysis method for labyrinth seals. In the future, the fluid-structure coupling can 
be adopted to verify the theory of labyrinth seals and to design labyrinth structures. The conclusions of 
the present study were drawn as follows: 
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(1) With the degree of tooth angle, the value of the leakage rate had a tendency to decrease at first, 
and then increase, according to fluid-solid coupling analysis. The lowest seal leakage rate occurred 
with a tooth profile angle of 60°. 

(2) Labyrinth seal leakage increased with the increase of sealing clearance width. A smaller sealing 
clearance width should be adopted, but at the same time, reducing the difficulty of the manufacturing 
process should also be considered. 

(3) For this type of reciprocating compressor, the minimum leakage was obtained at the cavity 
depth of 3.5 to 4 mm, when the sealing effect was the best. 
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