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Abstract. The paper is devoted to new computational techniques in mechanical optimization 

where one tries to study, model, analyze and optimize very complex phenomena, for which 

more precise scientific tools of the past were incapable of giving low cost and complete 

solution. Soft computing methods differ from conventional (hard) computing in that, unlike 

hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. 

The paper deals with an application of the bio-inspired methods, like the evolutionary 

algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) 

to optimization problems. Structures considered in this work are analyzed by the finite element 

method (FEM), the boundary element method (BEM) and by the method of fundamental 

solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and 

material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical 

structures, to optimize parameters of composites structures modeled by the FEM, to optimize 

the elastic vibrating systems to identify the material constants for piezoelectric materials 

modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS. 

1.  Introduction 

In the present paper, the application of bio-inspired methods in optimization of several structures is 

presented [1][7]. The evolutionary algorithms (EA), the artificial immune systems (AIS) and the 

particle swarm optimizers (PSO) are used to optimize shape, topology and material properties of 2D 

[16] and 3D structure, to optimize of termomechanical structures, to optimize of composites structures, 

to optimize of elastic vibrating systems and to identify in acoustics problem. Structures considered in 

this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and 

by the method of fundamental solutions (MFS). 

2.  Optimization methods 

Soft computing techniques resemble human reasoning more closely than traditional techniques, which 

are largely based on conventional logical systems or rely heavily on the mathematical capabilities of a 

computer. These computing techniques are often used to complement each other in applications. It 

should be pointed out that simplicity and complexity of systems are relative, and certainly, most 

successful mathematical modeling of the past have also been challenging and very significant. Unlike 

hard computing schemes, which strive for exactness and for full truth, soft computing techniques 

exploit the given tolerance of imprecision, partial truth, and uncertainty for a particular problem. 
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Another common contrast comes from the observation that inductive reasoning plays a larger role in 

soft computing than in hard computing. 

Three important areas of soft computing methods, namely: 

 

 Evolutionary Computation (EC), 

 Artificial Immune Systems (AIS), 

 Particle Swarm Methods (PSM), 

 

are presented in the paper. 

2.1.  Evolutionary Computation (EC) 

Evolutionary algorithms [5] are algorithms searching the space of solutions and they are based on the 

analogy to the biological evolution of species. Like in biology, the term of an individual is used, and it 

represents a single solution. Evolutionary algorithms operate on populations of individuals, so while 

the algorithm works, all the time we deal with a set of problem solutions. An individual consists of 

chromosomes. Usually it is assumed that an individual has one chromosome. Chromosomes consist of 

genes which are equivalents of design variables in optimisation problems. The adaptation is computed 

using fitness function. All the genes of an individual decide about the fitness function value.  

In the first step, an initial population of individuals is created. Usually, the values of the genes of 

particular individuals are randomly generated. In the next step, the fitness function value for each 

individuals is computed. Then, evolutionary operators change genes of the parent population 

individuals, they are then selected for the offspring population, which becomes a parent population 

and the algorithm is continuing iteratively till the end of the computation. The termination condition of 

the computation can be formulated as the maximum number of iterations.  

In evolutionary algorithms the floating-point representation is applied, which means that genes 

included in chromosomes are floating-point numbers. Usually the variation of the gene value is 

limited. 

Evolutionary operators change gene values like the biological mechanisms of mutation and crossover. 

Different kinds of operators are presented in publications, and the basic ones are: 

 

- uniform mutation, 

- mutation with Gaussian distribution, 

- boundary mutation, 

- simple crossover, 

- arithmetical crossover. 

 

An important element of an evolutionary algorithm is the mechanism of selection. The probability of 

the individual’s survival depends on the value of the fitness function. Ranking selection is performed 

in a few steps.  First, the individuals are classified according to the value of the fitness function, then a 

rank value is attributed to each individual. It depends on the individual’s number and the rank 

function. The best individuals obtain the highest rank value, the worst obtain the lowest one. In the 

final step individuals for the offspring generation are drawn, but the probability of drawing particular 

individuals is closely related to their rank value. 

2.2.  Artificial Immune Systems (AIS) 

The artificial immune systems (AIS) are developed on the basis of a mechanism discovered in 

biological immune systems [17]. An immune system is a complex system which contains distributed 

groups of specialized cells and organs. The main purpose of the immune system is to recognize and 

destroy pathogens - funguses, viruses, bacteria and improper functioning cells. The lymphocytes cells 

play a very important role in the immune system. The lymphocytes are divided into several groups of 

cells. There are two main groups B and T cells, both contains some subgroups (like B-T dependent or 
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B-T independent). The B cells contain antibodies, which could neutralize pathogens and are also used 

to recognize pathogens.  

The artificial immune systems [3] take only a few elements from the biological immune systems. The 

most frequently used are the mutation of the B cells, proliferation, memory cells, and recognition by 

using the B and T cells. The artificial immune systems have been used to optimization problems in 

classification and also computer viruses recognition. The cloning algorithm presented by de Castro [3] 

uses some mechanisms similar to biological immune systems to global optimization problems. The 

unknown global optimum is the searched pathogen. The memory cells contain design variables and 

proliferate during the optimization process. The B cells created from memory cells undergo mutation. 

The B cells evaluate and better ones exchange memory cells. In Wierzchoń [17] version of Clonalg the 

crowding mechanism is used - the diverse between memory cells is forced. A new memory cell is 

randomly created and substitutes the old one, if two memory cells have similar design variables. The 

crowding mechanism allows finding not only the global optimum but also other local ones. The 

presented approach is based on the Wierzchoń [17] algorithm, but the mutation operator is changed. 

The Gaussian mutation is used instead of the nonuniform mutation in the presented approach. 

In the first stage of a flowchart of an artificial immune system the memory cells are created randomly. 

They proliferate and mutate creating B cells. The number of nc clones created by each memory cell is 

determined by the memory cells objective function value. The objective functions for B cells are 

evaluated. The selection process exchanges some memory cells for better B cells. The selection is 

performed on the basis of the geometrical distance between each memory cell and B cells (measured 

by using design variables). The crowding mechanism removes similar memory cells. The similarity is 

also determined as the geometrical distance between memory cells. The process is iteratively repeated 

until the stop condition is fulfilled. The stop condition can be expressed as the maximum number of 

iterations [10]. 

2.3.  Particle Swarm Methods (PSM) 

The particle swarm algorithms [4][13], similarly to the evolutionary and immune algorithms,  are 

developed on the basis of the mechanisms discovered in the nature. The swarm algorithms are based 

on the models of the animals social behaviours: moving and living in the groups. The animals relocate 

in the three-dimensional space in order to change their stay place, the feeding ground, to find the good 

place for reproduction or to evading predators. We can distinguish many species of the insects living 

in swarms, fishes swimming in the shoals, birds flying in flocks or animals living in herds.  

A simulation of the bird flocking was published in [13]. They assumed that this kind of the 

coordinated motion is possible only when three basic rules are fulfilled: collision avoidance, velocity 

matching of the neighbours and flock centring. The computer implementation of these three rules 

showed very realistic flocking behaviour flying in the three dimensional space, splitting before 

obstacle and rejoining again after missing it. The similar observations concerned the fish shoals. 

Further observations and simulations of the birds and fishes behaviour gave in effect more accurate 

and more precise formulated conclusions [13]. The results of this biological examination where used 

by Kennedy and Eberhart [4], who proposed Particle Swarm Optimiser – PSO. This algorithm realizes 

directed motion of the particles in n-dimensional space to search for solution for n-variable 

optimisation problem. PSO works in an iterative way. The location of one individual (particle) is 

determined on the basis of its earlier experience and experience of whole group (swarm). Moreover, 

the ability to memorize and, in consequence, returning to the areas with convenient properties, known 

earlier, enables adaptation of the particles to the life environment. The optimisation process using PSO 

is based on finding the better and better locations in the search-space (in the natural environment that 

are for example hatching or feeding grounds). 

The algorithm with continuous representation of design variables and constant constriction coefficient  

(constricted continuous PSO) has been used in presented research. In this approach each particle 

oscillates in the search space between its previous best position and the best position of its neighbours, 

with expectation to find new best locations on its trajectory. When the swarm is rather small (swarm 
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consists of  several or tens particles) it can be assumed that all the particles stay in neighbourhood with 

currently considered one. In this case we can assume the global neighbourhood version and the best 

location found by swarm so far is taken into account –  current position of the swarm leader. 

At the beginning of the algorithm the particle swarm of assumed size is created randomly. Starting 

positions and velocities of the particles are created randomly. The objective function values are 

evaluated for each particle. In the next step the best positions of the particles are updated and the 

swarm leader is chosen. Then the particles velocities are modified and particles positions are also 

modified. The process is iteratively repeated until the stop condition is fulfilled. The stop condition is 

typically expressed as the maximum number of iterations. 

The general effect is that each particle oscillates in the search space between its previous best position 

(position with the best fitness function value) and the best position of its best neighbour (relatively 

swarm leader), hopefully finding new best positions (solutions) on its trajectory, what in whole swarm 

sense leads to the optimal solution. 

3.  Overview of the scientific research 

Three optimization algorithms described above were applied to the following tasks which are authors' 

research i.e.: 

 

-  optimization of shell and shell solid structures due to the shape, topology and material 

 properties, 

-  optimization of termomechanical structures,  

-  identification and optimization of composites structures,  

-  optimization of elastic vibrating systems,  

-  identification in acoustics problem. 

 

The first task concerns the optimization of shell and shell solid structures (figure 1a). At the beginning 

of optimization process the material is homogeneous. During this process material properties can be 

changed (density of material). Finally after optimization heterogeneous material is obtained [8]. As a 

result of changing of the material properties a part of the finite elements could be eliminated, resulting 

in a change of the outer boundary of shell or shell-solid structure (shape optimization) and were 

generated new internal boundaries as a holes (topology optimization). The optimization was 

performed using the artificial immune system, the particle swarm optimizer and the evolutionary 

algorithm. In the table 1 input data are presented i.e.: total load Q, constraint on maximal displacement 

u, thickness of 2D structure and range of changing of densities e. 

 

Table 1. The input data to the optimization task of a shell-solid structure 

shell thickness [mm] 
u 

[mm] 

Q 

[kN] 
range of e  [g/cm3]  

10.0 1.2 1.08 
0  e < 2.36 elimination 

2.36  e  7.86 existence 

 

Result after optimization process in the form of the map of displacements after deformation in the 

figure 1b is presented. 

Examples of application the optimization of shell and solid structures due to the shape, topology and 

material properties has been published in several articles [2][12]. 
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  (a)  (b) 

 

Figure 1. (a) Geometry and scheme of loading, (b) The map of displacements after deformation for 

optimal construction 

 

The next task concerns the optimization of thermoelasticity problem (coupled field) [14]. Considered 

bodies were subjected to simultaneous impact of thermal and mechanical fields (figure 2a). The 

coupled fields are a special case of coexistence phenomena of different physical nature. For a coupled 

problems, a set of variables describing physical phenomenon data cannot be reduced and replaced by a 

description of a single physical phenomenon and the phenomenon occurring in specific areas they 

cannot be separated. For coupled fields there are two classes of problems: coupling occurs at the 

interface areas by boundary conditions (eg. interaction fluid - solid), areas where there are phenomena 

overlap partially or completely, so that coupling takes place by the equations describing different 

physical phenomena (eg. thermoelasticity, piezoelectricity, electromagnetism). As an optimization 

example of coupled structures, thermo-mechanical systems are considered, for which the optimum 

shape of radiators modelled using Bezier curve (figure 2b) for several objective function is searched 

(minimization of volume, temperature and the maximum value of equivalent stresses). The 

optimization was performed using the artificial immune system and the particle swarm optimizer. In 

the table 2 input data are presented i.e.: pressure, heat flux, ambient temperature and heat convection 

coefficient. 

Table 2. Boundary conditions values 

Pressure 5000Pa 

Heat flux 1000W/m2 

Ambient temperature 25 C 

Heat convection coefficient 2W/m2K 

 

(a)   (b)   

Figure 2. (a) Geometry and scheme of loading, (b) Design parameters 
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Geometry after optimization process for three different optimization criteria in the figure 3 is 

presented. 

 

(a)  (b)  

 

(c)  

 

Figure 3. Geometry after optimization process: (a) minimization of temperature, (b) minimization of 

volume, (c) minimization of equivalent stresses 

 

Examples of application the optimization of termomechanical structures has been published in the 

paper [14]. 

 

Another problem is the optimization and identification of certain parameters for composite systems, 

which have high strength-to-weight ratio compared with traditional materials. The laminates, being 

multilayered, fibre reinforced composites, have especially superior properties. Searched: the number 

and order of layers and arrangement of layers and their thickness allowing for optimal strength 

properties. Identification of elastic constants material in a multi-layer laminate of different sequences 

of layers were also performed. The optimization was performed using the artificial immune system 

and the particle swarm optimizer. 

A symmetric hybrid laminate plate made of two materials is considered (figure 4b). The external plies 

of the laminate are made of material Me, the core of the plate is made of the material Mi .  

The properties of materials are: 

 

 material Me (graphite-epoxy, T300/5280): E1=181GPa, E2=10.3GPa, G12=7.17GPa, 12=0.28, 

=1600kg/m3; 

 material Mi (glass-epoxy, Scotchply 1002): E1=38.6GPa, E2=8.27GPa, G12=4.14GPa, 12=0.26, 

=1800 kg/m3. 

 

where: E1 – axial Young's modulus, E2 - transverse Young's modulus, G12 - axial-transverse shear 

modulus, 12 - axial-transverse Poisson ratio. 
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 (a) (b)   

Figure 4. The hybrid laminate plate: (a) dimensions and bearing;  (b) location of materials (for 12-

plies case) 

 

The aim of the optimization is to find the optimum ply angles of the hybrid laminate for the given 

number and thicknesses of the laminas (stacking sequence of plies). It is assumed that the number of 

laminas made of particular materials is constant. Results in the form of ply angles of the hybrid 

laminate for four variants in the table 3 are presented.  

The AIS and  PSO are employed to solve the optimization problem.  

 

Table 3. Optimization results 

Variant 
Plies 

no. 
Stacking sequence (ply angles) 

max(|cl-ex|) 

[Hz] 

 

continuous 12 (-48.3/-49.9/50.3/50.2/50/50.4)s 64.864 

 24 
(49.1/-48.9/48.9/49.1/49.2/49.4/49.2/-

49.2/49.2/49.2/49.1/-48)s 
65.718 

5o 12 (50/-50/-50/-50/-55/-55)s 64.633 

 24 (-50/50/50/-50/-50/50/50/-50/-50/-50/50/-45)s 65.613 

15o 12 (45/-45/-60/-60/-60/-60)s 63.02 

 24 (45/45/45/-45/45/-60/75/-60/60/-75/75/-60)s 63.750 

45o 12 (45/-45/-45/-90/-90/-90)s 60.663 

 24 (-45/45/45/-45/-45/-90/45/45/45/-90/-90/45)s 63.525 

 

Examples of application the identification of certain parameters for composite structures has been 

published in paper [9]. 

 

Next problem is devoted to reinforced structures considered in this work are dynamically loaded and 

analyzed by the coupled boundary and finite element method (BEM/FEM). 

The task of analysis was based on the determination of the fields of displacements, accelerations and 

the boundary forces (stresses) in shell structures, reinforced with stiffeners dynamically loaded and 

optimization of the structural form of these structures for the optimization criteria, built on designated 

fields. The optimal positions of stiffeners are searched in order to maximize stiffness of the plate 

subjected to the sinusoidal load, the Heaviside load and for three kinds of supports. The optimization 

was performed using the artificial immune system and the particle swarm optimizer. 

The optimization of the reinforced rectangular plate shown in figure 5 is presented. The plate is 

dynamically loaded and different kinds of load and support are considered (figure 6). 
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Figure 5. Reinforced rectangular plate 

 

Three different supports are considered: a) support A – the plate is fixed on the left and right edge, b) 

support B – the plate is fixed on two supports, each of 0.5 cm long, c) support C – the plate is 

supported on the bottom. 

 

 
 (a)  (b)  (c) 

Figure 6. Types of supports: (a) support A, (b) support B, (c) support C. 

 

The plate is reinforced by the frame structure composed of 4 straight beams of square cross-section 

(2ab). The length and the height of the plate is L=10 cm and H=5 cm, respectively. The thickness of 

the plate is g=0.25 cm, the dimensions of cross-section of beams are 2a=0.5 cm and b=0.5 cm.  

The material of the plate in plane stress and the frame is aluminum, for which the values of 

mechanical properties are: modulus of elasticity E=70 GPa, Poisson’s ratio =0.34 and density 

=2700 kg/m3. The material is homogeneous, isotropic and linear elastic. 

The uniformly distributed load is applied at the upper edge of the plate. Two kinds of time dependent 

loads are considered (figure 7): a) the sinusoidal load p()=posin(2/T) with the period of time T=20 

s, and b) the Heaviside load p()=poH(). The amplitude of the load in both cases is po=10 MPa. 

 

 
 (a)  (b) 

 

Figure 7. Dynamic loadings: (a) sinusoidal, (b) Heaviside 

 

Results after optimization problem in the table 4 are presented. 
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Table 4. Values of design variables, J and R 
L

o
ad

 

Support 
Design variables [cm] Jo 

[10-4cm] 

J 

[10-4cm] 

R  

[%] X1 X2 Y1 Y2 

AIS 

S
in

u
s.

 A 4.75 2.86 0.88 2.75 89 76 15 

B 4.75 1.81 0.57 2.75 92 73 21 

C 1.20 1.82 0.50 2.75 82 62 24 

H
ea

v
. A 0.50 4.75 0.50 4.50 112 91 19 

B 4.75 1.41 0.50 4.50 211 149 29 

C 0.50 2.20 1.70 2.80 49 42 14 

PSO 

S
in

u
s.

 A 4.75 2.86 0.88 2.75 89 76 15 

B 4.75 1.81 0.57 2.75 92 73 21 

C 1.20 1.82 0.50 2.75 82 62 24 

H
ea

v
. A 0.50 4.75 0.50 4.50 112 91 19 

B 4.75 1.41 0.50 4.50 211 149 29 

C 0.50 2.20 1.70 2.80 49 42 14 

 

More information of the optimization of dynamically loaded reinforced structures in paper [11] is 

presented. 

 

The last problem, which uses a bio-inspired algorithms is identification of complex values of the 

impedances of room walls for the acoustic problem. The acoustic field control and design require the 

determination of structure parameters, e.g. the acoustic absorption of building materials. The pressure 

measurements are simulated by the method of fundamental solutions MFS (meshless method). The 

optimization was performed using the artificial immune system and the particle swarm optimizer. 

Complex values of the impedances Z1÷ Z4 of room walls are identified. The geometry and other 

parameters of the analysed 2-D model of a room are presented in Figure 8. The same structure was 

considered by Dutilleux et al. The dimensions of the room model are: a = 3.4 m and b = 2.5 m. The 

acoustic medium is air at the temperature 20C. The analysis is performed for the frequency equal to 

100 Hz. Eight sensors are located at points with coordinates related to the wave length  and the room 

dimensions. The number of both the boundary points and the sources is equal to 54. The sources are 

located at a circle of radius r = 2.5 m, centered at the geometric centre of the rectangle (Figure 8).  

The AIS and its hybrid version HAIS [6], EA and PSO are employed to solve the optimization 

problem (table 5). 

 

20th Innovative Manufacturing Engineering and Energy Conference (IManEE 2016) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 161 (2016) 012040 doi:10.1088/1757-899X/161/1/012040

9



 

 

 

 

 

 

 
 

Figure 8. Scheme of the problem solved by the MFS and the HAIS 

 

Table 5. Reference values of genes and results obtained by using different methods 

Results Reference values 
(8,56)-ES, Dutilleux et 

al.  
AIS, EA, PSO HAIS 

p1 4920 4706 4833 4920 

p2 1590 1591 1484 1590 

p3 2390 2487 2362 2390 

p4 3720 3756 3678 3720 

p5 3400 3400 3370 3400 

p6 50 84 49 50 

p7 3500 3568 3720 3500 

p8 2200 2174 2256 2200 

Examples of application identification in acoustics problem has been published in several articles 

[6][15]. 

4.  Conclusions 

In the paper the formulation and application of the finite element method, boundary element method, 

method of fundamental solutions and the bio-inspired methods to optimization of several structures is 

presented. The bio-inspired methods can be simply implemented because it needs only the values of 

objective functions. The important feature of this approaches is the strong probability of finding the 

global optimal solutions. The described approaches are free from limitations connected with classic 

gradient optimization methods. 
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