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Abstract. In the present study, the potential of microwave irradiation as an innovative energy-
efficient alternative to conventional heating technologies in ceramic manufacturing is 
reviewed, addressing the advantages/disadvantages, while also commenting on future 
applications of possible commercial interest. Ceramic materials have been extensively studied 
and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, 
a novel technology widely employed in various fields, can be an efficient, economic and 
environmentally-friendlier approach, to improve the consolidation efficiency and reduce the 
processing cycle-time, in order to attain substantial energy and cost savings. Microwave 
sintering provides efficient internal heating, as energy is supplied directly and penetrates the 
material. Since energy transfer occurs at a molecular level, heat is generated throughout the 
material, thus avoiding significant temperature gradients between the surface and the interior, 
which are frequently encountered at high heating rates upon conventional sintering. Thus, 
rapid, volumetric and uniform heating of various raw materials and secondary resources for 
ceramic production is possible, with limited grain coarsening, leading to accelerated 
densification, and uniform and fine-grained microstructures, with enhanced mechanical 
performance. This is particularly important for manufacturing large-size ceramic products of 
quality, and also for specialty ceramic materials such as bioceramics and electroceramics. 
Critical parameters for the process optimization, including the electromagnetic field 
distribution, microwave-material interaction, heat transfer mechanisms and material 
transformations, should be taken into consideration. 

1.  Introduction 
Due to their advantages, ceramics have been extensively studied, marketed and used so far, starting 
from various raw materials and possessing specific characteristics for being serviceable in multiple 
environments. In ceramic industry as well as in powder metallurgy, sintering is one of the most 
important technological processes and has been developed for over 70 years. It takes places when 
packed particles are heated to a temperature where there is sufficient atomic motion to grow bonds 
between the particles. Driving force for the process is the particle surface tension leading to 
minimizing the surface area. Sintering mainly depends on the type of material under consideration, its 
melting temperature, particle size (volume, surface) and several other processing parameters. 
Fundamental mechanisms of the process include grain boundary diffusion, viscous flow, evaporation 
and recondensation. Sintering conditions determine the development of a microstructure to provide 
physico-mechanical and chemical properties required for the ceramic body. Solid-state sintering of 
clayey raw materials through conventional thermal treatment has long been considered for the 
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development of various ceramic materials and is traditionally a preferred manufacturing technique for 
industrial ceramics [1-9]. 

On the other side, microwave radiation is emerging as an innovative environmentally benign 
technology, widely employed in various fields, such as in green chemistry, biosciences, biomass 
processing, waste, sewage sludge and wastewater treatment (especially for oxidation/degradation of 
pollutants of poor biodegradability), synthesis of nanoparticles, processing of nanostructured 
composites (nanoconsolidation) and nanoporous materials, as well as in metallurgical processes 
including drying of agglomerations and reduction of ore concentrates. The goals are the reduction of 
processing time and equipment size to significant extent and also the increase of selectivity and 
product yield and purity in case of synthesis or purification reactions [10-20]. 

Particularly, microwave-assisted sintering can be an efficient, economic and valuable approach for 
eco-friendlier processing of various powdery oxide and non-oxide materials [21-24]. 

In the present study, an overview of the potential of microwave technology as viable and energy-
efficient alternative to conventional heating procedures in ceramic manufacturing is attempted, by 
reviewing advances published in the scientific research literature in the field, and commenting on the 
advantages/disadvantages reported and also on future applications of possible commercial interest. It 
should be noted here that fast heating is required for sintering advanced ceramics, in order to avoid 
excessive grain growth that is detrimental to mechanical performance. The role of microwave 
processing conditions on the development of ceramic microstructures and properties is discussed and 
analyzed. 

2.  Microwave irradiation 
Microwave irradiation can produce efficient internal heating, as energy is supplied directly and 
penetrates the material through molecular interaction with the electromagnetic field. Since energy 
transfer occurs at a molecular level, its interaction with a dielectric material results in translational 
motions of free or bound charges and rotation of the dipoles. The resistance of the induced motions 
causes heat losses, and thereby heat is generated throughout the material resulting in volumetric 
heating, thus reducing the processing time. 

The power absorbed per unit volume, P (W m-3), is expressed as follows (see Equation 1) [15]: 
 

P = σ |E|2 = 2 π f ε0 ε′r tanδ |E|2        (1) 
 
where E (V m-1) is the magnitude of the internal field, 

σ the total effective conductivity (S m-1), 
f the frequency (usually 2.45 GHz: industrial scientific and medical frequency) 
ε0 the permittivity of free space (ε0 = 8.86×10–12 F m-1), 
ε′r the relative dielectric constant and 
tanδ is the loss tangent. 

The microwave field distribution within a ceramic body, and the effect on the material, is 
determined by the dielectric parameters (ε′r and tanδ). Specifically, the dielectric constant measures 
the ability of a material to store microwave energy. The loss tangent provides an indication of how 
well a material can be penetrated by electric field and how it dissipates energy into heat [25]. 

3.  Microwave sintering of ceramic materials 

3.1.  Bulk ceramics 
Microwave processes can improve the densification efficiency and considerably reduce the processing 
cycle-time for rapid and uniform heating, especially of thick ceramic materials, thus resulting in 
substantial energy and cost savings. Hence, there is sufficient motivation to promote the use of 
microwaves in the sintering of various ceramics, and also glass-ceramics, nano-ceramics and bio-
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ceramics, and to investigate the effect of microwave sintering conditions on the microstructure, phase 
composition and properties of the materials produced compared to conventionally sintered ones. 

Significant developments have already been made in the use of microwaves in the sintering of 
ceramics. Particularly for the development of advanced ceramics, very fast sintering is required to 
avoid grain growth. By microwave heating, densification of ceramics can be attained in a very short 
time. Rapid and enhanced consolidation achieved upon microwave processing of ceramics should 
mainly be attributed to a microwave effect, assumed to be a non-thermal phenomenon and possibly 
explained by the concentration of electrical energy into the closed pores of green (non-sintered) 
ceramics [26]. However, other study on a microscopic scale of microwave sintering of compacted 
ceramic powders shows that local electric fields disproportionately intense close to grain boundaries 
can be generated and rough surfaces due to strong focusing can be produced, which can lead to a 
highly non-uniform energy deposition [27]. Therefore, in order to increase the understanding and 
control the sintering progress, by determining the optimal parameters of microwave irradiation for 
obtaining an expected microstructure, an attractive method was proposed for in-situ shrinkage 
measurement of a microwave irradiated sample during sintering in a specific microwave cavity 
appropriately designed. The sintering kinetics are found to be extraordinarily fast for achieving 
satisfying density, when microwave sintering of CuO was chosen as a test material [27]. Furthermore, 
in order to design suitable cavity and cells for both hybrid and direct microwave sintering of fine-
grained pure α-Al2O3 powder and to allow reliable comparison with conventional sintering, finite 
element simulation was employed. A significant enhancement of densification under microwave 
irradiation during the first and intermediate stages is evidenced upon sintering the alpha alumina 
powder compacts along an identical thermal cycle, without use of any doping element to initiate 
heating [29]. On the other hand, no difference between the two heating modes during the late stages 
of sintering is indicated, when comparing densification and grain growth o f  microwave sintered 
Al2O3 ceramic materials to conventionally sintered ones, by analyzing microwave power absorption of 
alumina ceramics and heating profiles for both sintering modes [30]. In nanostructured Al2O3 
ceramics in particular, with regard to the annealing of nanoporous alumina-based membranes under 
microwave heating, the influence of microwave processing on mass transport phenomena and phase 
transformations is highlighted. Actually, faster mass transport, significantly depending on the 
microwave field intensity, is observed upon microwave sintering of alumina powder compacts. In 
addition, phase transformations can be characterized quantitatively and also a preferred orientation of 
pores in ceramics can be predicted [31]. 

The sintering process of glass powder (CaO-ZrO2-SiO2), microwave heated to produce a glass-
ceramic material, is also accelerated in comparison to conventional sintering, although the 
densification and microstructural evolution studied during crystallization of the glass-ceramics 
obtained is not affected differently when compared to conventionally-treated ones, and exhibits a 
negligible porosity as a result of micropores [32]. 

It should further be noted that, for ceramics development, several secondary resources have also 
been microwave processed. In particular, after rapid microwave sintering of compacts composed of 
highly calcareous (Class C) lignite combustion fly ash and bottom ash for 30 min (at 1000°C), dense 
ceramic microstructures, mainly composed of gehlenite, quartz and kyanite, are achieved [33]. Also, 
microwave sintered (800-1000°C) siliceous (Class F) coal fly ash samples appear to be denser, and 
thus stronger, than conventionally sintered ones at the same temperature and time [34]. In order to 
reduce the volume of municipal solid waste incineration fly ash, microwave irradiation has better 
sintering efficiency than traditional sintering with electro-furnace (800-1100°C) for the stabilization 
and transformation of washed fly ash with calcium carbonate into ceramic blocks [35,36]. Moreover, 
rice husk ash, SiO2-rich material rapidly sintered (800-1200°C) by microwave energy using a multi-
mode system, is shown to contain SiO2-cristolbalite and α-SiO2 as major ceramic phases, with amount 
of crystalline silica phase increased after microwave sintering, leading to enhanced mechanical 
performance [37]. 
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3.2.  Bioceramics 
Submicrometer tricalcium phosphate (β-TCP) powder produced in-situ by wet chemical precipitation, 
and sintered to obtain dense β-TCP ceramics by microwave technology for 15 min at 1100°C, shows a 
better densified microstructure with average grain size of 3μm, and higher hardness, than samples 
conventionally sintered for 2h at the same temperature, leading to the conclusion of a superior 
mechanical performance for the microwave sintered β-TCP powder [38]. Also, porous biphasic 
HAP/TCP bioceramics were obtained by microwave sintering of two microspherical agglomerated 
HAP powders. The porous microstructures of the obtained bioceramics consist in biphasic mixtures of 
HAP and a-TCP crystalline phases developed during the sintering process, while spherical intra-
agglomerate pores and shapeless inter-agglomerate pores are detected. The microstructure obtained 
appears to have only a minor effect on the indentation fracture toughness [39]. The potential of a 
microwave heating was further demonstrated in the sintering of bioceramics from stabilized zirconia 
(3Y-TZP), another excellent susceptor of microwave energy, due to its large concentration of point 
defects. In fact, the mechanical properties including hardness and fracture toughness of high density 
and ultrafine microstructures with monomodal grain size distribution resulting from short time 
processing in a domestic microwave oven, compare very well with 3Y-TZP ceramics conventionally 
sintered for a long duration [40]. 

3.3.  Electroceramics 
Microwave sintering has also widely been considered for processing electroceramics, a specific 
category of ceramic materials primary used for their electrical properties, including ferroelectric 
materials, ferrites, solid electrolytes and piezoelectrics: 

In particular, microwave sintering of strontium bismuth titanate powder prepared by solid state 
route leads to higher densification (97% of the theoretical density), fine microstructure, and good 
mechanical and ferroelectric properties in much shorter duration of time, in comparison to that heated 
in conventional furnaces [41]. Calcium-doped barium titanate (Ba(1-x)CaxTiO3) ferroelectric ceramics 
synthesized by  microwave processing technique, optimized at 1100oC for 1h to form a single 
perovskite phase, show dense and homogeneous packing of sub-micrometer size grains [42]. Also, 
preparation of SiO2 added BaTiO3 ceramics was successfully attained by microwave sintering at low 
temperatures. A homogeneous microstructure with small grains appears for 0.5wt% SiO2 addition, 
while an enhanced densification and appearance of Ba2TiSi2O8 second phase with columnar grains for 
further increase of SiO2 addition to 1and 2wt% are stated, leading to the improvement of the electrical 
break-down strengths [43]. 

Lead zirconate titanate are ceramic perovskite materials showing marked piezoelectric effect, being 
used in a number of practical applications in the area of electroceramics. Higher density and more 
uniform grain distribution are found for ceramic pellets from lanthanum-doped PZT fine powders 
(PLZT) processed by high energy mechanical ball milling, and then microwave sintered at 1150◦C for 
much shorter sintering time than for conventionally sintered ones. Comparable dielectric and 
piezoelectric properties are obtained for microwave sintered PLZT ceramics [44]. 

For lanthanum gallate electrolytes, which generally present a superior ionic conductivity at 
intermediate temperatures than YSZ ones, especially when lanthanum is substituted by alkaline rare 
earths such as strontium and magnesium (LSGM), activated microwave sintering at lower 
temperatures makes possible to overcome problems related to grain coarsening and secondary phases 
formation occurring at elevated temperatures upon conventional heating. Hence, dense stable 
electrolyte layer for applications in intermediate temperature-solid oxide fuel cells are developed, due 
to heat generation in situ, leading to faster sintering kinetics [45]. 

Furthermore, microwave sintering can be a promising technology even for the development of 
materials such as MnZn-ferrites to be used in high magnetic permeability applications, as it results to 
higher magnetic permeability values, higher densities and coarser microstructures, in comparison to 
conventional firing [46-48]. 

20th Innovative Manufacturing Engineering and Energy Conference (IManEE 2016) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 161 (2016) 012068 doi:10.1088/1757-899X/161/1/012068

4



 
 
 
 
 
 

4.  Concluding remarks 
• Microwave sintering emerges as a new field of processing and synthesis of ceramic materials, and 

appears to be a powerful method for sintering advanced ceramics in a short time. 
• Significant progress in application and commercialization of microwave technology, particularly 

in specialty ceramics processing, has already been made. 
• Comparison with conventional sintering reveals a number of benefits of microwave processing, in 

terms of microstructural design and physico-mechanical properties. 
• Rapid heating with accelerated densification is enabled, while excessive grain coarsening is 

limited, leading to higher densities and uniform and fine-grained microstructures, with enhanced 
mechanical performance. 

• By microwave sintering of ceramic materials, significant temperature gradients between the 
surface and the interior that are frequently encountered upon conventional sintering of a ceramic 
body at high heating rates can be avoided, which is of importance especially for manufacturing 
large-size ceramic products of quality. 

• The distribution of the electromagnetic field, the interaction between microwaves and the material, 
heat transfer mechanisms and material transformations appear to be critical for the process 
optimization. 
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