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Abstract. Zinc oxide nanostructured materials, such as films and nanoparticles, could provide a 

suitable platform for development of high performance biosensing material due to their unique 

fundamental material properties. In this study, the enzyme biosensing consisting of a zinc oxide 

(ZnO) nanoparticles were grown on SiO2/Si substrates by vacuum thermal evaporation method 

and their sensing characteristics are examined in air and investigated. The film morphology is 

characterized by X-ray diffraction (XRD) the film crystalline quality and by scanning electron 

microscopy (SEM). Also, the interest in surface waves appeared due to evanescent waves in the 

metallic strip grating structure (MSG-Ag/ZnO/SiO2/Si) in sub-wavelength regime. Before 

testing the sensor with metamaterials (MMs) lens in the sub-wavelength regime, a simulation of 

the evanescent wave’s formation has been performed at the edge of Ag strips, with thicknesses 

in the range of micrometers. 

1.  Introduction 

The stability of ZnO nanostructures under physiological conditions, being important for sensing and 

biosensing applications, depends on the crystal quality of the nanostructures but can be assumed as 

sufficient for structures grown by thermal evaporation methods [1]. Nanostructures made of ZnO are 

easy and reliable to produce in a wide manner of different forms and structures [2]. ZnO is very versatile 

and due to its high coupling coefficient, many applications exist, like Surface Acoustic Wave (SAW) 

devices [3], bulk acoustic wave devices, gas sensors [4-5], infrared detectors, tactile sensor arrays and 

enzyme biosensors [6]. The evidence of plasmons apparition in structures of wires with micrometric 

diameters has been shown for Al at frequency of 8.2 GHz [7]. 

The possibility to excite plasmons at lower or equivalent frequencies in complex structures 

containing silver metallic strip gratings (MSGs) was investigated. A MSG interface supports the well-

known surface plasmon-polariton (SPP) modes, yielded by the coupling of the EM field with the 

coherent oscillations of the free electrons in the metal. Their ability to store and propagate the EM energy 

at subwavelength scales is essential for many applications such as biosensing, photonic circuits and 

optical data storage. 

In this paper, in order to confirm the availability of ZnO nanostructures for convenient high-

efficiency biosensors, the glucose sensing performance via the electrical properties to be measured in 
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air was investigated. Also, the interest in surface waves appeared due to evanescent waves in the MSG 

in sub-wavelength regime. The experimental test is making with the sensor with metamaterials lens [8,9] 

in the sub-wavelength regime, and a simulation of the evanescent wave’s formation has been performed 

at the edge of Ag strips, with thicknesses in the range of micrometers. In this work, high quality ZnO 

films were grown on SiO2/Si substrates by vacuum thermal evaporation method is characterized by X-

ray diffraction the film crystalline quality and by Scanning Electron Microscopy (SEM) the film 

morphology. This method has many advantages such as being a low cost, simple, high yield, 10-5 Torr 

pressure, deposition rate of 0.05 mm/s and a deposition time of 30 s. The high electrochemical response 

can be attributed to the unique structural properties of our sensor electrode like the high surface to 

volume ratios of ZnO nanoparticles, which can provide a favorable microenvironment for the 

immobilization of uricase enzyme and retain the good enzymatic activities which in turn enhances the 

sensitivity of sensor electrode for the analyte, as demonstrated by the detection of uric acid in the absence 

of a mediator. 

2.  Experimental section 

The morphology of the nanostructure significantly affects its electrochemical properties, so numerous 

ZnO nanostructures have been investigated for application in enzyme biosensor. The physical, chemical 

and surface properties of the desired support determine the method of uricase enzyme immobilization, 

the nature of the immobilized sensing molecules, and the overall biosensor performance. While the 

redox capabilities of enzymes are not typically enhanced because of their insulated redox centers, 

specific ZnO nanostructures can facilitate direct electron transfer (DET) between enzyme electroactive 

sites and external electrodes [10-14]. The synthesis of ZnO nanostructures by different techniques has 

promoted the fabrication of enzyme biosensors. 

a  b 

Figure 1. a) MSG structure; b) Working principles of a ZnO nanostructure-based 

enzyme biosensing. 

To sensing mechanism for enzyme biosensing (e.g. uric acid and ascorbic acid) designed in this 

purpose, the voltage applied across the two electrodes causes a current to flow via electron tunneling 

through the potential barriers between nanoparticles. Detecting uric acid in physiological fluids is 

important for diagnosing disorders associated with altered purine metabolism [15,16]. Equation (1) 

describe the uricase catalyzing reaction: 

5 4 4 3 2 2

5 6 4 3 2 2 2

C H N O (uric acid) + O +2H O 

C H N O (allantoin) + CO H Ouricase 
  (1) 

A reagentless uric acid biosensor based on uricase functionalized ZnO nanostructures exhibits good 

thermal stability and anti-interference capability. When uric acid is oxidized in the presence of uricase 

it is turned into allantoin along with carbon dioxide and hydrogen peroxide. Due to the presence of water 

(H-OH), it is a high probability that allantoin will accept a proton from (H-OH) converting it to 

allantoinium ion, which in turn will interact with the ZnO nanostructures and produce a potential change 

at the electrode. As the concentration of ions changes in surrounding the ZnO nanostructures and the 

electrode potential will change. The potentiometric responses of the sensor electrodes were studied in 

uric acid solutions made in buffer (PBS pH 7.0). 
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3.  Structural characterization 

The XRD patterns of the obtained structures were carried out on a diffractometer using CuK radiation 

( =1.5406 Å) (Figure 2). The samples were analyzed in the range of 2θ=5o÷80o with a scanning angle 

rate of 0.02 and a 2 s/step count time. The experimental XRD patterns were identified using 

Crystallographica Search-Match programme. The XRD peaks for ZnO crystalline phases are visible. 

The reflection peaks, at (100), (002), (101), (110), (103) and (112) were indicative of the hexagonal 

wurtzite ZnO nanostructure.The ZnO film is polycrystalline in nature having a preferred grain growth 

orientation along (002) and (101) planes which correspond with the peaks at 34.4 and 36.2o. The 

weakness of the peaks is related to the thickness of the thin films. This is due the nature of the source 

material and it is assumed that only nanoparticles migration from the source to the substrate takes place. 

 

Figure 2. XRD ZnO thin film deposited on SiO2/Si 

substrate. 

For structural characterization of Ag/ZnO/substrate nanostructures scanning electron microscopy, 

SEM, investigations were performed. The SEM showed that the structure of the films of ZnO is 

columnar (Figure 3 a). It can be shown also that of ZnO nanostructured without bound enzyme had a 

uniform film, while ZnO nanostructured with bound enzyme had many globular structures. These 

observations confirmed immobilization of enzyme. The surfaces are without inclusions and defects, fact 

that make them appropriate for radio frequencies applications. 

 a  b 

Figure 3. The SEM images of cholesterol oxidase bound ZnO nanostructures: (a) without 

enzyme; (b) with immobilized uricase 

4.  Evanescent waves. FDTD simulation 

Due to experimental difficulties in obtaining a perfect lens, the manipulation of evanescent modes can 

be made with an electromagnetic sensor with MMs lenses that have, at the operation frequency, either 

eff = -1, and the lens can focus magnetic evanescent modes [18-20,9,21-23]. The spatial resolution of 

the system was verified according to [20] and the analysis of data obtained show that the realization of 

MM lenses in the radiofrequency range is possible using CSR, whose distortions are minimal and whose 

calculation are based on Fourier optic principles [24].  
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The sensor and experimental set-up is presented [25,17]. Generation and detection of evanescent 

waves in slits are made using the electromagnetic sensor lens. The rectangular frame used for the 

generation of TMz polarized waves is identical with rectangular frame used for the simulation model 

and the lens is made from a CSR [8,17]. The working frequency was 474 MHz. The simulation was 

make using XFDTD 6.3 software produced by REMCOM [26]. In Figure 4 is shown the result of 

simulation with XFDTD.  The Ey component, which counts in our case, is displayed. In [27] it has been 

presented the behavior of the field with air in the slits, it can be shown that, for uricase between the 

strips, the amplitude of the electric field has the same behavior as in [22] but the amplitude decreasing 

due to electrical permittivity high of the uricase. Thus, the symmetrical maxima appear in the middle of 

the slits, decreasing to the minimum value, on the strips edges. Inside the strips, other pair of maxima 

appears, followed by the decreasing to middle of the strip.  

The Fig. 6 shows the dependency of voltage amplitude induced in the reception coil of sensor at the 

scanning of the MSG taken into study, the image showing that the type of sensor allows the correct 

emphasizing of extremely thick conductive strips and eventual interruptions.  

 

 

 

Figure 4. Numerical results for electric-field 

amplitude distribution near the strips; the field 

values are normalized to the amplitude of the 

incident field. 

 Figure 5. Amplitude of voltage induced in 

the reception coil at the scanning of silver 

strip grating. 

The existence of a single evanescent mode, theoretically foreseen, is experimentally confirmed by 

the existence of a local maximum in the middle zone of the slits, followed by an accentuated decreasing 

on the edge of the strips. The results are in good concordance with theoretical estimations, that confirms 

good adhesion of silver on ZnO/SiO2/Si, also good alignments of strips.  

5.  Experimental set-up and biosensing properties 

ZnO nanostructured have excellent prospects for interfacing biological recognition events with 

electronic signal transduction as a new generation of biosensors in which active enzymes sites are 

coupled directly with a nanostructured ZnO electrode resulting in direct electron transfer between the 

enzyme and nanostructured ZnO with improved biosensing properties.  

The initial experimental dates were carried out using a multimeter device because of its versatility in 

measuring resistance, voltage and ampere. The multimeter probes were immersed into 5 ml sodium 

phosphate buffer (0.02 M, pH 7.0) in a beaker. The reaction was started by adding 0.5 ml of enzyme 

solution. Based on the current produced during the chemical reaction the number of molecules of uricase 

and consequently the amount of uricase present in the sample could be determined. The current was 

measured at varying concentrations of uricase to obtain a full working range. The sensing mechanism 

of most electrochemical uric acid sensors is based on an enzymatic reaction catalyzed by uricase as 

described in Figure 6. 
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Figure 6. Schematic diagram of the uric acid sensing setup using ZnO-NP 

coated with uricase as working electrode showing the possible electrochemical 

reaction near the working electrode. 

To study effect of uricase concentration, the concentration was varied from 100 to 1300 mg/dl and 

amperometric measurements were made after 0.5 ml of uric acid added. The probe was immersed into 

the solutions and the displayed ampere was noted against the concentration of the solution. 

 

 

 

Figure 7. The calibration curve of uric acid 

biosensor based on ZnO/SiO2/Si 

nanostructures for linear concentration range 

of 5.2 to 20.8 mM 

 Figure 8. Variation in the current at a fixed 

potential of 0.04 V with changing uricase 

concentration to Ag/ZnO/SiO2/Si 

architecture biosensing 

Figure 7 shows the relation between the output potential response and uricase concentration for the 

element biosensing. It is clearly seen from the graph that the response current increases as the 

concentration of uricase increases and saturated at high concentration of uricase which suggests the 

saturation of active sites of the enzymes at those uric acid levels. The selectivity study suggests that the 

presence of interferants, like ascorbic acid, have a negligible effect on the performance of the 

Ag/ZnO/SiO2/Si architecture toward sensing of uricase (Figure 8). The calibration curves were obtained 

in the range of 100-1300 mg/dl (2.6-33.8 mM), with coefficient of determination was estimated to be 

R2 = 0.9859. Under optimized conditions, the steady-state current showed a linear dynamic range of 

200-800 mg/dl (5.2-20.8 mM). 

6.  Conclusions 

A simple fabrication technique for a biosensing electrochemical uric acid sensor based on ZnO 

nanostructures deposited on SiO2/Si substrate by vacuum thermal evaporation was performed. The Ag 

strip grating thickness of µm order is comparable with the depth penetration of electromagnetic wave of 
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474 MHz, so that evanescent waves appear at the edge of strips and their manipulation can improve the 

resolution power of the sensor.  

The experimental measurement was made with a sensor with metamaterials lens. It has been proved 

that sensors with metamaterials lens can be used in amplitude evaluation of the evanescent waves formed 

at the edge of strips of Ag/ZnO/SiO2/Si structure. The calibration curves were obtained in the range of 

2.6 to 33.8 mM, with coefficient of determination was estimated to be R2 = 0.9859. By results obtained 

it is shown that the element biosensing structure investigated is rapid and sensitive for the detection of 

uricase. One can concluded that due to the simple synthesis and electrode fabrication, good sensitivity, 

low detection limit and fast response, the ZnO nanostructured opens a way for the fabrication of highly 

efficient cholesterol biosensors. 
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