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Abstract. Presently, the issue of processing large data on a timely manner poses as a challenge 

to many ICT researchers. Most commodity computers are interconnected in a network forming 

a cluster computing resource simulating a super computer. This paper explores heuristically the 

performance of homogeneous, heterogeneous and multi-core clusters. This work consists of 

five experiments: Equal task partitioning according to the number of nodes in homogeneous 

cluster, number of nodes in heterogeneous cluster, number of nodes in heterogeneous cluster 

with multithreading, number of cores in heterogeneous cluster and number of cores in 

heterogeneous cluster with multithreading. The task is Sobel edge detection method tested with 

an array of images. The images are processed in three different sizes; 1K x 1K, 2K x 2K and 

3K x 3K. The performance evaluations are based on processing speed. The results yield 

promising impact of equal partitioning and threading in parallel processing hierarchical 

heterogeneous cluster. 

 

Keywords: Parallel Processing, Task Partitioning, Hierarchical Heterogeneous Cluster, Multi-

Core, Heuristic Testing 

 

1. Introduction 

Moore’s law predicted that the volume of data generated will exceed computational power capability. 

Advance technology in machinery has made it possible to generate massive volume of data also 

known as the Big Data phenomenon. With this came the challenge of mining and analysing data to 

extract meaningful and accurate business or scientific information [1]. In spite of the existence of very 

efficient serial algorithms, the problems of harvesting information still remains due to the magnitude 

of processing and handling such datasets [2].  Such datasets usually requires supercomputers to ensure 

reasonable completion times [3].  

 Recent years have seen the rise of highly parallelized approaches on multi-core-servers or 

computer clusters to deal with this problem [4]. Low cost commodity PCs provides high computing 

resources which are often underutilized [4][5].  A group of these loosely coupled computers connected 

via high-speed network forms clusters which are scalable in nature [6]. Clusters provide a viable cost-

effective platform for the execution of intensive parallel multithreaded applications [5] [7] [8] and 
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simulate a super computer [3].In addition to multi-core CPUs, current desktop systems are equipped 

with programmable accelerators, such as Graphics Processing Units (GPUs), which raise both the 

system’s processing power and the level of intrinsic heterogeneity [9]. This converts the traditional 

clusters into hierarchical systems, where each computing node may have several multi-core processors 

[10].   

 The challenge of using these resources to process vast amount of data and information is 

intriguing as developers need to design their applications to run efficiently on distributed, hierarchical, 

heterogeneous environments [10]. Large-scale distributed processing platforms nodes consisting of 

multi-core processors motivates the integration of traditional APIs to articulate concurrency (threads) 

and scalable parallelism (messaging) [11]. Research in the area is still in its infancy as true potentials 

of these systems have not been fully explored [9]. Current systems solve this problem by dividing 

large data into chunks which can be distributed over computers in a cluster. However, the array of 

computing power and speed in heterogeneous distributed platform coupled with intrinsic 

characteristics of data-intensive problems instigate huge load imbalances which affect the efficiency of 

resources utilization [10].  

 Distributed computing systems have been deployed  for the execution of data and computational 

intensive workloads[12]. In homogeneous clusters of PCs, static load balancing is accomplished by 

allocation equal tasks to each processor[7]. However, finding an efficient task partitioning techniques 

is becoming increasingly important for heterogeneous distributed systems where the availability and 

variability of nodes may change drastically over time[12]. The assignment of tasks to available nodes 

is referred to as a resource allocation or a mapping[13].  Factors affecting effective mapping policies 

are the sets of available nodes in the system, specification of these nodes, and their 

interconnectivity[7]. Efficient  task partitioning and allocation techniques is critical in exploiting the 

utmost potential of  highly heterogeneous distributed systems [9] [14]. These distributed system 

typically contain multiple processor cores, allowing multiple network packets to be processed 

concurrently [15]. Optimizing each nodes capability involves  partitioning tasks into a number of 

separate concurrent tasks that matches the number of cores on the target architecture. Data can be 

divided into arbitrary-sized load fractions to suit the computation capability of each node[16].  

 Parallelism can be classified according to task or data. In task parallelism, each processor is 

allocated different task which executes the same data. Whereas in data parallelism, each processor 

executes different data with the same task such as Single Program Multiple Data (SPMD) model. 

SPMD can be applied in shared and distributed memory environments with the benefits of global 

communication, scalability, synchronization and ease of use [17]. OpenMP is one of the popular 

programming modes to solve limited memory capacity for shared memory environments [18]. On the 

other hand, MPI platform [8] allows communication through message passing which is important in 

distributed memory environments. To date, no literature has been found that empirically explores 

basic distributed systems architecture impact which involves both hardware and software. 

 This paper discusses static heuristics tasks partitioning that map to resources in hierarchical 

heterogeneous system. Images are partitioned into chunks according to number of nodes and number 

of cores which are distributed over a cluster of computers. In addition to this, the use of threading in 

optimizing the usage of cores is also explored. The images are processed using Sobel edge detection 

algorithm which can be classified as task intensive and since the size of the image are significant it can 

also be classified as data Intensive. 

 

2.   Data intensive case study 

The experiment is done based on image data involving an algorithm namely Sobel to detect edges of 

objects in the image. Sobel is a simple and popular edge detection algorithm that is used to verify the 

output consistency throughout the experiments of the heuristic parallel processing. The data consists of 

ten different types of images in three different sizes (1Kx1K, 2Kx2K and 3Kx3K). Images are selected 

as the experiment data as it fit the criteria of both data and computationally intensive. The lists of 

images are shown in Figure 1. 
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Figure 1. Test Image 

 

3. Experimental Works 

3.1 Parallel processing heuristic experiments 

The experiments contain two major testing components; hardware and software. The hardware 

architecture relies on parallel architecture and specification of the node in the cluster. The software 

design involves scheduling and task partitioning. The experimental begins with determining the 

processors’ specifications in the clusters then networked together. Next, task partitioning is 

programmed at the master node (Master-Worker [11]) to equally divide the image according to the 

hardware specifications. Then, the intermediate results at each node are communicated to the master 

node to produce a final output.  

 Two types of parallel architectures are homogeneous and heterogeneous. Homogeneous parallel 

architecture consists of identical processors; meanwhile heterogeneous parallel architecture is a 

mixture of no identical processors working in tandem as a system. In the experiment, the 

homogeneous cluster is built using four single core processors and in the heterogeneous cluster, a mix 

of two single core processors and two duo core processors.  

 The flow of the experiments consists of four phases; partitioning, allocating, image processing 

and image stitching.  Initially, the image is partitioned equally according to the number of nodes. 

Then, the sub-images are allocated to each node before being processed by its processor.  Finally, all 

sub-images are stitched together to produce a single output. Figure 2 depicts a conceptual flow of the 

parallel algorithm. 

 

 
Figure 2. Conceptual Flow 
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 Partitioning method is a method that involves how to separate the large data; 1kx1k, 2kx2k and 

3kx3k image split into smaller images called sub-images (image A.1, A.2 image) in FIGURE 3-1. To 

split a large image cannot be split blindly. It should take 31 into account the Sobel case studies. The 

Sobel edge detection algorithm is done in 3x3 filters to apply the edge. So the division should be made 

with preferred images in one pixel per cut. Split the image according to the heuristic experience 

specification needs pixel overlapping due the nature of Sobel. Each partition is numbered by the 

location of the partition. 

 One image divided with total node on heterogeneous architecture. All this can be summarize in 

term mathematical equation below in EQUATION 3-1. Where n is a total number of node and L is a 

length of image. So the (𝒙) is an area every node can get. 

 

 
 

 
Figure 3. 3 Partitioning Images in Research 

 

3.2. Heuristic experiment 

In order to understand the hardware and software performances in parallel processing, series of 

experiments were outlined. The parallel experiments cover both the homogeneous and heterogeneous 

architectures.  The heterogeneous architecture with equal partitioning according to nodes and cores are 

investigated together with/without threading. Table 1 lists all the experiment conducted in this 

research. 

 
Table 1: Experiment listing 

 

  

First, the tasks are partitioned equally among identical nodes. Secondly, a heterogeneous cluster is 

tested by partitioning tasks equally among the nodes. Then, partitioning of tasks is performed 

according to the hardware specifications (number of cores in each node) of the heterogeneous cluster 

to explore the implication of cores to the parallel performance.  
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4.  Results and discussion 

The result for each node is based on speed of processing in seconds. The total time is taken from 

Original Image A to Full Result Image A (refer to Figure 2). In addition, the CPU is measured by 

percentage of usage.  

 

4.1. Results for Homogeneous Architecture with Node Partitioning 

The total processing time for homogeneous cluster on each node shows almost the same value. The 

ratio between image size and the processing time are approximately linear. Table 2 shows the details 

of the performance measurements. 

 

Table 2. Speed of Homogeneous Architecture with Node Partitioning 

 

No 

1k x 1k 2k x 2k 3k x 3k 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 1 2 3 4 1 2 3 4 1 2 3 4 

1 6 7 7 7 9 25 25 25 24 28 55 55 55 55 60 

2 6 6 6 7 9 25 25 25 25 29 54 55 54 54 60 

3 7 7 7 6 8 24 24 24 25 28 54 55 54 54 60 

4 6 6 7 6 9 25 25 25 24 28 55 54 54 54 60 

5 6 6 6 7 9 25 25 25 25 28 54 55 54 54 59 

6 7 7 7 6 9 25 25 24 24 27 54 55 54 54 60 

7 6 6 7 6 9 24 25 24 24 29 55 54 55 54 60 

8 6 6 7 7 9 25 25 24 25 28 54 55 54 55 60 

9 7 6 7 6 9 24 24 26 24 28 54 54 54 54 59 

10 6 6 6 6 9 25 24 17 33 28 55 55 54 54 60 

 

It is also found that the type of image does not have any influence on the processing speed. Table 3 

shows the usage of CPU on each node in percentage. It is found that all CPUs are fully utilized. 

 

Table 3. CPU usage of Homogeneous Architecture with Node Partitioning 

 

size 
Node CPU usage (%) 

1 2 3 4 

1k x 1k 100 100 100 100 

2k x 2k 100 100 100 100 

3k x 3k 100 100 100 100 

 

 

 This experiment shows that equal partitioning of data according to the number of nodes works 

well in the homogenous architecture. 

 

4.2. Results for heterogeneous architecture with node partitioning 

The results for heterogeneous cluster with equal node partitioning show almost similar values when 

compared to homogeneous cluster as depicted in Table 4. Therefore, it can be concluded that the node 

(in heterogeneous cluster) performs at equal speed regardless of two or single core. This indicates that 

task allocation totally relies on user’s partitioning software rather than hardware manager.  
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Table 4. Speed of Heterogeneous Architecture with Node Partitioning 

 

No 

1k x 1k 2k x 2k 3k x 3k 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 1 2 3 4 1 2 3 4 1 2 3 4 

1 6 6 7 6 9 25 24 24 24 24 55 54 54 54 65 

2 6 7 6 7 10 26 23 25 25 25 55 54 54 54 62 

3 6 6 6 7 9 24 24 24 24 24 54 54 54 54 60 

4 6 6 7 6 8 25 24 24 24 24 55 54 54 53 59 

5 7 6 6 6 10 25 24 25 24 24 55 53 54 54 61 

6 6 6 6 6 9 24 24 24 24 24 55 54 54 53 61 

7 6 6 7 6 9 24 24 25 24 24 54 53 54 54 60 

8 6 6 6 7 9 24 24 24 24 24 55 54 54 53 60 

9 6 6 7 7 9 24 24 24 24 24 54 53 54 54 60 

10 6 6 7 6 10 24 24 24 25 25 56 54 54 54 60 

 

In terms of CPU usage, nodes that have two cores are found to be partially (about half) utilized. 

Whereas the CPU in single core nodes are fully utilized as shown in Table 5. This implies that in the 

case of two core nodes, the task is only allocated to either one of them which suggest that hardware 

manager does not support automatic task partitioning. 

 

Table 5. CPU usage of Heterogeneous Architecture with Node Partitioning 

 

No 

1k x 1k 2k x 2k 3k x 3k 

Node CPU usage (%) Node CPU usage (%) Node CPU usage (%) 

1 2 3 4 1 2 3 4 1 2 3 4 

1 55.22 52.17 100 100 64.39 54.29 100 100 67.65 52.31 100 100 

2 54.35 51.52 100 100 61.72 52.34 100 100 63.89 52.82 100 100 
3 55.15 52.21 100 100 53.68 52.94 100 100 51.56 52.24 100 100 

4 52.27 52.14 100 100 52.34 66.67 100 100 65.07 52.31 100 100 

5 64.39 52.99 100 100 53.03 52.14 100 100 68.84 52.17 100 100 
6 51.47 52.21 100 100 53.03 54.29 100 100 62.69 52.94 100 100 

7 53.73 52.21 100 100 53.03 52.21 100 100 60.61 52.21 100 100 

8 53.03 52.14 100 100 67.36 52.24 100 100 66.42 52.21 100 100 
9 55.15 52.78 100 100 53.68 51.47 100 100 61.97 52.86 100 100 

10 52.90 51.43 100 100 52.17 51.56 100 100 57.86 52.94 100 100 

 In conclusion, the overall results of this experiment show that the hardware manager alone 

cannot optimize the use of all available CPUs in heterogeneous hierarchical architecture.  

 

4.3. Results for heterogeneous architecture with node partitioning and multithreading 

Since this experiment is similar to experiment 2 except the use of multithreading, the results show the 

node speed significantly increased by almost doubled for small image size. However, as the size of 

images increase the difference in speed becomes more obvious. Table 6 illustrates the results.  

 

Table 6. Speed of Heterogeneous Architecture with Node Partitioning with multithreading 

 

No 

1k x 1k 2k x 2k 3k x 3k 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 1 2 3 4 1 2 3 4 1 2 3 4 

1 3 3 4 4 11 9 15 15 22 24 21 21 33 33 42 

2 3 3 4 4 11 10 15 15 18 25 22 21 32 32 38 

3 2 2 4 4 6 9 15 15 17 24 21 21 32 32 38 

4 2 3 3 3 6 9 14 14 18 24 22 21 32 32 37 

5 3 3 4 4 7 9 14 14 18 24 21 21 32 33 37 

6 3 3 4 5 7 9 15 15 18 24 21 21 32 32 37 
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7 2 3 4 4 6 10 15 14 18 24 22 21 32 33 37 

8 2 2 4 4 6 9 15 15 18 24 22 21 32 33 38 

9 3 3 3 4 6 9 15 15 18 24 21 21 32 32 37 

10 3 2 4 4 6 10 15 15 18 25 22 21 33 32 38 

  

In addition, multithreading helps increase the speed for two core nodes with regards to single core 

while the CPU of all nodes shows full utilization as depicted in Table 7. 

 
Table 7: CPU usage of Heterogeneous Architecture with Node Partitioning with multithreading 

 

size 
Node CPU usage (%) 

1 2 3 4 

1k x 1k 100 100 100 100 

2k x 2k 100 100 100 100 

3k x 3k 100 100 100 100 

     

 This experiment shows that using multithreading increases the speed of processing for all the 

nodes. Multithreading also manage to utilize the duo core CPUs more efficiently as seen in node 1 and 

2 in table 5. 

 

4.4. Results for heterogeneous architecture with node and core partitioning 

Table 8 shows the results of experiment 4. The results show that node 3 and 4 which are single core, 

perform almost twice better than node 1 and 2 (dual core). This corresponds to the allocated sub-image 

size.  

 

Table 8. Speed of Heterogeneous Architecture with Node and Core Partitioning 

 

No 

1k x 1k 2k x 2k 3k x 3k 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 1 2 3 4 1 2 3 4 1 2 3 4 

1 8 8 4 5 12 33 32 16 16 39 74 71 37 37 81 

2 8 8 4 5 12 33 32 16 17 37 73 71 36 36 80 

3 8 8 4 4 12 33 32 17 16 37 73 72 36 36 79 
4 8 8 4 5 12 33 33 16 17 38 73 72 36 37 82 

5 8 8 5 4 12 32 32 17 17 36 73 71 36 37 80 

6 8 8 4 5 12 32 32 17 16 38 74 72 36 36 81 
7 9 8 5 4 14 32 32 16 17 38 73 73 36 36 79 

8 9 8 4 5 13 32 31 17 16 37 74 72 37 36 80 

9 9 8 5 4 12 32 32 16 17 38 73 72 36 36 80 
10 8 8 5 4 13 34 33 17 16 40 73 73 36 36 80 

 

In terms of CPU usage, nodes that have two cores are found to be partially (about half) utilized. 

Whereas the CPU in single core nodes are fully utilized as shown in Table 9. This also indicates that in 

the case of two core nodes, the task is only allocated to either one of them which suggest that hardware 

manager does not support automatic task partitioning. 

 

Table 9. CPU usage of Heterogeneous Architecture with Node and Core Partitioning 

 

No 

1k x 1k 2k x 2k 3k x 3k 

Node CPU usage (%) Node CPU usage (%) Node CPU usage (%) 

1 2 3 4 1 2 3 4 1 2 3 4 

1 52.21 52.17 100 100 52.94 74.24 100 100 65.63 51.52 100 100 

2 51.52 52.78 100 100 52.70 52.34 100 100 63.08 52.82 100 100 

3 52.14 51.47 100 100 71.01 51.52 100 100 70.42 52.17 100 100 

4 51.52 53.03 100 100 53.03 87.91 100 100 64.93 52.86 100 100 

5 51.52 50.77 100 100 53.03 51.54 100 100 64.93 53.79 100 100 

6 51.47 51.47 100 100 65.15 53.03 100 100 59.85 53.79 100 100 

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

7



 
 
 
 
 
 

7 67.81 54.17 100 100 52.99 52.21 100 100 66.91 53.13 100 100 

8 64.29 52.86 100 100 54.48 52.34 100 100 58.59 53.03 100 100 

9 69.40 53.91 100 100 52.94 52.99 100 100 64.71 55.22 100 100 

10 60.14 52.14 100 100 55.30 52.27 100 100 53.08 73.38 100 100 

  

 This indicates that when a duo core node is given twice the size of single core, the sub-images 

are not automatically partition according to the available cores. 

 

4.5. Results for heterogeneous architecture with node and core partitioning inclusive multithreading 

Table 10 shows the results of experiment 5. The results show that the single core performs only 

slightly better than dual core node. This implies that multithreading the processing speed for both 

single and duo core nodes.  

 

Table 10. Speed of Heterogeneous Architecture with Node and Core Partitioning with multithreading 
 

No 

1k x 1k 2k x 2k 3k x 3k 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 

Node speed (s) Total 

Time 1 2 3 4 1 2 3 4 1 2 3 4 
1 4 3 3 2 7 13 12 10 10 17 28 28 22 22 34 

2 3 3 3 2 7 13 12 10 10 17 28 28 22 22 35 

3 3 4 3 3 7 13 12 9 10 18 28 28 22 22 35 

4 3 3 2 2 8 12 13 10 10 17 28 27 22 22 34 

5 4 3 3 3 8 13 13 11 10 18 29 27 22 22 34 

6 3 3 2 3 7 13 13 11 10 18 28 28 22 22 34 

7 3 3 3 3 8 13 12 11 10 19 28 28 22 23 34 

8 3 3 3 2 7 12 12 10 11 17 28 27 22 22 35 

9 4 3 3 2 8 12 12 10 11 17 29 28 22 22 34 

10 3 3 2 3 8 13 13 10 10 18 28 28 22 22 35 

 

Multithreading also helps in CPU utilization as shown in Table 11.  

 

Table 11. CPU usage Heterogeneous Architecture with Node and Core Partitioning with 

multithreading 

 

size 
Node CPU usage (%) 

1 2 3 4 

1k x 1k 100 100 100 100 

2k x 2k 100 100 100 100 

3k x 3k 100 100 100 100 

 

This experiment shows that multithreading is able to optimize the processing speed by utilizing the all 

the cores and CPU in the cluster. 

 

5. Discussion and Conclusion 

Experiment 1 shows that in homogenous architecture, a simple equal partition will equally speedup the 

processing with equal partition allocation.  The result of Experiment 2 which is almost similar to 

experiment 1 indicates that a heterogeneous architecture will perform the same as homogenous 

architecture when it is allocated with equal partition. However, adding multithreading in Experiment 3 

shows an improvement in processing time compared to Experiment 2. Hence, utilizing multithreading 

helps to optimize the heterogeneous architecture. Moreover, CPU usage indicates the cores are fully 

utilized which is reflected by the smaller processing time of the duo cores node. 

 In Experiment 4 where partition allocation corresponds to number of core, the speed 

corresponds to the size of partition.  This indicates the additional core does not have any impact on the 
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number of partition. This implies that the hardware manager cannot automatically optimize the load 

increase.  Experiment 5 proves that the multithreading helps the hardware manager to optimize the 

core utilization to its potential.  

 In conclusion, partitioning according to number of node and core is viable.  The full potential of 

the cores can be seen through multithreading. 
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