

Heuristic Experiments of Threading and Equal Load

Partitioning For Hierarchical Heterogeneous Cluster

Noor Elaiza Abdul Khalid
1
, Rathiah Hashim

2
, Noorhayati Mohamed Noor

1
,

Muhammad Helmi Rosli
1
, Mazani Manaf

1

1
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Shah

Alam, Selangor, Malaysia
2
Faculty of Computer Science and Information Technology, Universiti Tun Hussein

Onn Malaysia, Parit Raja, Malaysia

E-mail: elaiza@tmsk.uitm.edu.my, radhiah@uthm.edu.my,

noorhayati@tmsk.uitm.edu.my, helmirosli@gmail.com, mazani@tmsk.uitm.edu.my

Abstract. Presently, the issue of processing large data on a timely manner poses as a challenge

to many ICT researchers. Most commodity computers are interconnected in a network forming

a cluster computing resource simulating a super computer. This paper explores heuristically the

performance of homogeneous, heterogeneous and multi-core clusters. This work consists of

five experiments: Equal task partitioning according to the number of nodes in homogeneous

cluster, number of nodes in heterogeneous cluster, number of nodes in heterogeneous cluster

with multithreading, number of cores in heterogeneous cluster and number of cores in

heterogeneous cluster with multithreading. The task is Sobel edge detection method tested with

an array of images. The images are processed in three different sizes; 1K x 1K, 2K x 2K and

3K x 3K. The performance evaluations are based on processing speed. The results yield

promising impact of equal partitioning and threading in parallel processing hierarchical

heterogeneous cluster.

Keywords: Parallel Processing, Task Partitioning, Hierarchical Heterogeneous Cluster, Multi-

Core, Heuristic Testing

1. Introduction

Moore’s law predicted that the volume of data generated will exceed computational power capability.

Advance technology in machinery has made it possible to generate massive volume of data also

known as the Big Data phenomenon. With this came the challenge of mining and analysing data to

extract meaningful and accurate business or scientific information [1]. In spite of the existence of very

efficient serial algorithms, the problems of harvesting information still remains due to the magnitude

of processing and handling such datasets [2]. Such datasets usually requires supercomputers to ensure

reasonable completion times [3].

 Recent years have seen the rise of highly parallelized approaches on multi-core-servers or

computer clusters to deal with this problem [4]. Low cost commodity PCs provides high computing

resources which are often underutilized [4][5]. A group of these loosely coupled computers connected

via high-speed network forms clusters which are scalable in nature [6]. Clusters provide a viable cost-

effective platform for the execution of intensive parallel multithreaded applications [5] [7] [8] and

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

simulate a super computer [3].In addition to multi-core CPUs, current desktop systems are equipped

with programmable accelerators, such as Graphics Processing Units (GPUs), which raise both the

system’s processing power and the level of intrinsic heterogeneity [9]. This converts the traditional

clusters into hierarchical systems, where each computing node may have several multi-core processors

[10].

 The challenge of using these resources to process vast amount of data and information is

intriguing as developers need to design their applications to run efficiently on distributed, hierarchical,

heterogeneous environments [10]. Large-scale distributed processing platforms nodes consisting of

multi-core processors motivates the integration of traditional APIs to articulate concurrency (threads)

and scalable parallelism (messaging) [11]. Research in the area is still in its infancy as true potentials

of these systems have not been fully explored [9]. Current systems solve this problem by dividing

large data into chunks which can be distributed over computers in a cluster. However, the array of

computing power and speed in heterogeneous distributed platform coupled with intrinsic

characteristics of data-intensive problems instigate huge load imbalances which affect the efficiency of

resources utilization [10].

 Distributed computing systems have been deployed for the execution of data and computational

intensive workloads[12]. In homogeneous clusters of PCs, static load balancing is accomplished by

allocation equal tasks to each processor[7]. However, finding an efficient task partitioning techniques

is becoming increasingly important for heterogeneous distributed systems where the availability and

variability of nodes may change drastically over time[12]. The assignment of tasks to available nodes

is referred to as a resource allocation or a mapping[13]. Factors affecting effective mapping policies

are the sets of available nodes in the system, specification of these nodes, and their

interconnectivity[7]. Efficient task partitioning and allocation techniques is critical in exploiting the

utmost potential of highly heterogeneous distributed systems [9] [14]. These distributed system

typically contain multiple processor cores, allowing multiple network packets to be processed

concurrently [15]. Optimizing each nodes capability involves partitioning tasks into a number of

separate concurrent tasks that matches the number of cores on the target architecture. Data can be

divided into arbitrary-sized load fractions to suit the computation capability of each node[16].

 Parallelism can be classified according to task or data. In task parallelism, each processor is

allocated different task which executes the same data. Whereas in data parallelism, each processor

executes different data with the same task such as Single Program Multiple Data (SPMD) model.

SPMD can be applied in shared and distributed memory environments with the benefits of global

communication, scalability, synchronization and ease of use [17]. OpenMP is one of the popular

programming modes to solve limited memory capacity for shared memory environments [18]. On the

other hand, MPI platform [8] allows communication through message passing which is important in

distributed memory environments. To date, no literature has been found that empirically explores

basic distributed systems architecture impact which involves both hardware and software.

 This paper discusses static heuristics tasks partitioning that map to resources in hierarchical

heterogeneous system. Images are partitioned into chunks according to number of nodes and number

of cores which are distributed over a cluster of computers. In addition to this, the use of threading in

optimizing the usage of cores is also explored. The images are processed using Sobel edge detection

algorithm which can be classified as task intensive and since the size of the image are significant it can

also be classified as data Intensive.

2. Data intensive case study

The experiment is done based on image data involving an algorithm namely Sobel to detect edges of

objects in the image. Sobel is a simple and popular edge detection algorithm that is used to verify the

output consistency throughout the experiments of the heuristic parallel processing. The data consists of

ten different types of images in three different sizes (1Kx1K, 2Kx2K and 3Kx3K). Images are selected

as the experiment data as it fit the criteria of both data and computationally intensive. The lists of

images are shown in Figure 1.

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

2

Image 1

Image 2

Image 3

Image 4

Image 5

Image 6

Image 7

Image 8

Image 9

Image 10

Figure 1. Test Image

3. Experimental Works

3.1 Parallel processing heuristic experiments

The experiments contain two major testing components; hardware and software. The hardware

architecture relies on parallel architecture and specification of the node in the cluster. The software

design involves scheduling and task partitioning. The experimental begins with determining the

processors’ specifications in the clusters then networked together. Next, task partitioning is

programmed at the master node (Master-Worker [11]) to equally divide the image according to the

hardware specifications. Then, the intermediate results at each node are communicated to the master

node to produce a final output.

 Two types of parallel architectures are homogeneous and heterogeneous. Homogeneous parallel

architecture consists of identical processors; meanwhile heterogeneous parallel architecture is a

mixture of no identical processors working in tandem as a system. In the experiment, the

homogeneous cluster is built using four single core processors and in the heterogeneous cluster, a mix

of two single core processors and two duo core processors.

 The flow of the experiments consists of four phases; partitioning, allocating, image processing

and image stitching. Initially, the image is partitioned equally according to the number of nodes.

Then, the sub-images are allocated to each node before being processed by its processor. Finally, all

sub-images are stitched together to produce a single output. Figure 2 depicts a conceptual flow of the

parallel algorithm.

Figure 2. Conceptual Flow

I

I1 I2 In

Partitioning

method

N1Co N2Co NmCo

Allocating

method

G1 G2 Gn

Processing

method

Stitching

method

G

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

3

 Partitioning method is a method that involves how to separate the large data; 1kx1k, 2kx2k and

3kx3k image split into smaller images called sub-images (image A.1, A.2 image) in FIGURE 3-1. To

split a large image cannot be split blindly. It should take 31 into account the Sobel case studies. The

Sobel edge detection algorithm is done in 3x3 filters to apply the edge. So the division should be made

with preferred images in one pixel per cut. Split the image according to the heuristic experience

specification needs pixel overlapping due the nature of Sobel. Each partition is numbered by the

location of the partition.

 One image divided with total node on heterogeneous architecture. All this can be summarize in

term mathematical equation below in EQUATION 3-1. Where n is a total number of node and L is a

length of image. So the (𝒙) is an area every node can get.

Figure 3. 3 Partitioning Images in Research

3.2. Heuristic experiment

In order to understand the hardware and software performances in parallel processing, series of

experiments were outlined. The parallel experiments cover both the homogeneous and heterogeneous

architectures. The heterogeneous architecture with equal partitioning according to nodes and cores are

investigated together with/without threading. Table 1 lists all the experiment conducted in this

research.

Table 1: Experiment listing

First, the tasks are partitioned equally among identical nodes. Secondly, a heterogeneous cluster is

tested by partitioning tasks equally among the nodes. Then, partitioning of tasks is performed

according to the hardware specifications (number of cores in each node) of the heterogeneous cluster

to explore the implication of cores to the parallel performance.

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

4

4. Results and discussion

The result for each node is based on speed of processing in seconds. The total time is taken from

Original Image A to Full Result Image A (refer to Figure 2). In addition, the CPU is measured by

percentage of usage.

4.1. Results for Homogeneous Architecture with Node Partitioning

The total processing time for homogeneous cluster on each node shows almost the same value. The

ratio between image size and the processing time are approximately linear. Table 2 shows the details

of the performance measurements.

Table 2. Speed of Homogeneous Architecture with Node Partitioning

No

1k x 1k 2k x 2k 3k x 3k

Node speed (s) Total

Time

Node speed (s) Total

Time

Node speed (s) Total

Time 1 2 3 4 1 2 3 4 1 2 3 4

1 6 7 7 7 9 25 25 25 24 28 55 55 55 55 60

2 6 6 6 7 9 25 25 25 25 29 54 55 54 54 60

3 7 7 7 6 8 24 24 24 25 28 54 55 54 54 60

4 6 6 7 6 9 25 25 25 24 28 55 54 54 54 60

5 6 6 6 7 9 25 25 25 25 28 54 55 54 54 59

6 7 7 7 6 9 25 25 24 24 27 54 55 54 54 60

7 6 6 7 6 9 24 25 24 24 29 55 54 55 54 60

8 6 6 7 7 9 25 25 24 25 28 54 55 54 55 60

9 7 6 7 6 9 24 24 26 24 28 54 54 54 54 59

10 6 6 6 6 9 25 24 17 33 28 55 55 54 54 60

It is also found that the type of image does not have any influence on the processing speed. Table 3

shows the usage of CPU on each node in percentage. It is found that all CPUs are fully utilized.

Table 3. CPU usage of Homogeneous Architecture with Node Partitioning

size
Node CPU usage (%)

1 2 3 4

1k x 1k 100 100 100 100

2k x 2k 100 100 100 100

3k x 3k 100 100 100 100

 This experiment shows that equal partitioning of data according to the number of nodes works

well in the homogenous architecture.

4.2. Results for heterogeneous architecture with node partitioning

The results for heterogeneous cluster with equal node partitioning show almost similar values when

compared to homogeneous cluster as depicted in Table 4. Therefore, it can be concluded that the node

(in heterogeneous cluster) performs at equal speed regardless of two or single core. This indicates that

task allocation totally relies on user’s partitioning software rather than hardware manager.

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

5

Table 4. Speed of Heterogeneous Architecture with Node Partitioning

No

1k x 1k 2k x 2k 3k x 3k

Node speed (s) Total

Time

Node speed (s) Total

Time

Node speed (s) Total

Time 1 2 3 4 1 2 3 4 1 2 3 4

1 6 6 7 6 9 25 24 24 24 24 55 54 54 54 65

2 6 7 6 7 10 26 23 25 25 25 55 54 54 54 62

3 6 6 6 7 9 24 24 24 24 24 54 54 54 54 60

4 6 6 7 6 8 25 24 24 24 24 55 54 54 53 59

5 7 6 6 6 10 25 24 25 24 24 55 53 54 54 61

6 6 6 6 6 9 24 24 24 24 24 55 54 54 53 61

7 6 6 7 6 9 24 24 25 24 24 54 53 54 54 60

8 6 6 6 7 9 24 24 24 24 24 55 54 54 53 60

9 6 6 7 7 9 24 24 24 24 24 54 53 54 54 60

10 6 6 7 6 10 24 24 24 25 25 56 54 54 54 60

In terms of CPU usage, nodes that have two cores are found to be partially (about half) utilized.

Whereas the CPU in single core nodes are fully utilized as shown in Table 5. This implies that in the

case of two core nodes, the task is only allocated to either one of them which suggest that hardware

manager does not support automatic task partitioning.

Table 5. CPU usage of Heterogeneous Architecture with Node Partitioning

No

1k x 1k 2k x 2k 3k x 3k

Node CPU usage (%) Node CPU usage (%) Node CPU usage (%)

1 2 3 4 1 2 3 4 1 2 3 4

1 55.22 52.17 100 100 64.39 54.29 100 100 67.65 52.31 100 100

2 54.35 51.52 100 100 61.72 52.34 100 100 63.89 52.82 100 100
3 55.15 52.21 100 100 53.68 52.94 100 100 51.56 52.24 100 100

4 52.27 52.14 100 100 52.34 66.67 100 100 65.07 52.31 100 100

5 64.39 52.99 100 100 53.03 52.14 100 100 68.84 52.17 100 100
6 51.47 52.21 100 100 53.03 54.29 100 100 62.69 52.94 100 100

7 53.73 52.21 100 100 53.03 52.21 100 100 60.61 52.21 100 100

8 53.03 52.14 100 100 67.36 52.24 100 100 66.42 52.21 100 100
9 55.15 52.78 100 100 53.68 51.47 100 100 61.97 52.86 100 100

10 52.90 51.43 100 100 52.17 51.56 100 100 57.86 52.94 100 100

 In conclusion, the overall results of this experiment show that the hardware manager alone

cannot optimize the use of all available CPUs in heterogeneous hierarchical architecture.

4.3. Results for heterogeneous architecture with node partitioning and multithreading

Since this experiment is similar to experiment 2 except the use of multithreading, the results show the

node speed significantly increased by almost doubled for small image size. However, as the size of

images increase the difference in speed becomes more obvious. Table 6 illustrates the results.

Table 6. Speed of Heterogeneous Architecture with Node Partitioning with multithreading

No

1k x 1k 2k x 2k 3k x 3k

Node speed (s) Total

Time

Node speed (s) Total

Time

Node speed (s) Total

Time 1 2 3 4 1 2 3 4 1 2 3 4

1 3 3 4 4 11 9 15 15 22 24 21 21 33 33 42

2 3 3 4 4 11 10 15 15 18 25 22 21 32 32 38

3 2 2 4 4 6 9 15 15 17 24 21 21 32 32 38

4 2 3 3 3 6 9 14 14 18 24 22 21 32 32 37

5 3 3 4 4 7 9 14 14 18 24 21 21 32 33 37

6 3 3 4 5 7 9 15 15 18 24 21 21 32 32 37

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

6

7 2 3 4 4 6 10 15 14 18 24 22 21 32 33 37

8 2 2 4 4 6 9 15 15 18 24 22 21 32 33 38

9 3 3 3 4 6 9 15 15 18 24 21 21 32 32 37

10 3 2 4 4 6 10 15 15 18 25 22 21 33 32 38

In addition, multithreading helps increase the speed for two core nodes with regards to single core

while the CPU of all nodes shows full utilization as depicted in Table 7.

Table 7: CPU usage of Heterogeneous Architecture with Node Partitioning with multithreading

size
Node CPU usage (%)

1 2 3 4

1k x 1k 100 100 100 100

2k x 2k 100 100 100 100

3k x 3k 100 100 100 100

 This experiment shows that using multithreading increases the speed of processing for all the

nodes. Multithreading also manage to utilize the duo core CPUs more efficiently as seen in node 1 and

2 in table 5.

4.4. Results for heterogeneous architecture with node and core partitioning

Table 8 shows the results of experiment 4. The results show that node 3 and 4 which are single core,

perform almost twice better than node 1 and 2 (dual core). This corresponds to the allocated sub-image

size.

Table 8. Speed of Heterogeneous Architecture with Node and Core Partitioning

No

1k x 1k 2k x 2k 3k x 3k

Node speed (s) Total

Time

Node speed (s) Total

Time

Node speed (s) Total

Time 1 2 3 4 1 2 3 4 1 2 3 4

1 8 8 4 5 12 33 32 16 16 39 74 71 37 37 81

2 8 8 4 5 12 33 32 16 17 37 73 71 36 36 80

3 8 8 4 4 12 33 32 17 16 37 73 72 36 36 79
4 8 8 4 5 12 33 33 16 17 38 73 72 36 37 82

5 8 8 5 4 12 32 32 17 17 36 73 71 36 37 80

6 8 8 4 5 12 32 32 17 16 38 74 72 36 36 81
7 9 8 5 4 14 32 32 16 17 38 73 73 36 36 79

8 9 8 4 5 13 32 31 17 16 37 74 72 37 36 80

9 9 8 5 4 12 32 32 16 17 38 73 72 36 36 80
10 8 8 5 4 13 34 33 17 16 40 73 73 36 36 80

In terms of CPU usage, nodes that have two cores are found to be partially (about half) utilized.

Whereas the CPU in single core nodes are fully utilized as shown in Table 9. This also indicates that in

the case of two core nodes, the task is only allocated to either one of them which suggest that hardware

manager does not support automatic task partitioning.

Table 9. CPU usage of Heterogeneous Architecture with Node and Core Partitioning

No

1k x 1k 2k x 2k 3k x 3k

Node CPU usage (%) Node CPU usage (%) Node CPU usage (%)

1 2 3 4 1 2 3 4 1 2 3 4

1 52.21 52.17 100 100 52.94 74.24 100 100 65.63 51.52 100 100

2 51.52 52.78 100 100 52.70 52.34 100 100 63.08 52.82 100 100

3 52.14 51.47 100 100 71.01 51.52 100 100 70.42 52.17 100 100

4 51.52 53.03 100 100 53.03 87.91 100 100 64.93 52.86 100 100

5 51.52 50.77 100 100 53.03 51.54 100 100 64.93 53.79 100 100

6 51.47 51.47 100 100 65.15 53.03 100 100 59.85 53.79 100 100

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

7

7 67.81 54.17 100 100 52.99 52.21 100 100 66.91 53.13 100 100

8 64.29 52.86 100 100 54.48 52.34 100 100 58.59 53.03 100 100

9 69.40 53.91 100 100 52.94 52.99 100 100 64.71 55.22 100 100

10 60.14 52.14 100 100 55.30 52.27 100 100 53.08 73.38 100 100

 This indicates that when a duo core node is given twice the size of single core, the sub-images

are not automatically partition according to the available cores.

4.5. Results for heterogeneous architecture with node and core partitioning inclusive multithreading

Table 10 shows the results of experiment 5. The results show that the single core performs only

slightly better than dual core node. This implies that multithreading the processing speed for both

single and duo core nodes.

Table 10. Speed of Heterogeneous Architecture with Node and Core Partitioning with multithreading

No

1k x 1k 2k x 2k 3k x 3k

Node speed (s) Total

Time

Node speed (s) Total

Time

Node speed (s) Total

Time 1 2 3 4 1 2 3 4 1 2 3 4
1 4 3 3 2 7 13 12 10 10 17 28 28 22 22 34

2 3 3 3 2 7 13 12 10 10 17 28 28 22 22 35

3 3 4 3 3 7 13 12 9 10 18 28 28 22 22 35

4 3 3 2 2 8 12 13 10 10 17 28 27 22 22 34

5 4 3 3 3 8 13 13 11 10 18 29 27 22 22 34

6 3 3 2 3 7 13 13 11 10 18 28 28 22 22 34

7 3 3 3 3 8 13 12 11 10 19 28 28 22 23 34

8 3 3 3 2 7 12 12 10 11 17 28 27 22 22 35

9 4 3 3 2 8 12 12 10 11 17 29 28 22 22 34

10 3 3 2 3 8 13 13 10 10 18 28 28 22 22 35

Multithreading also helps in CPU utilization as shown in Table 11.

Table 11. CPU usage Heterogeneous Architecture with Node and Core Partitioning with

multithreading

size
Node CPU usage (%)

1 2 3 4

1k x 1k 100 100 100 100

2k x 2k 100 100 100 100

3k x 3k 100 100 100 100

This experiment shows that multithreading is able to optimize the processing speed by utilizing the all

the cores and CPU in the cluster.

5. Discussion and Conclusion

Experiment 1 shows that in homogenous architecture, a simple equal partition will equally speedup the

processing with equal partition allocation. The result of Experiment 2 which is almost similar to

experiment 1 indicates that a heterogeneous architecture will perform the same as homogenous

architecture when it is allocated with equal partition. However, adding multithreading in Experiment 3

shows an improvement in processing time compared to Experiment 2. Hence, utilizing multithreading

helps to optimize the heterogeneous architecture. Moreover, CPU usage indicates the cores are fully

utilized which is reflected by the smaller processing time of the duo cores node.

 In Experiment 4 where partition allocation corresponds to number of core, the speed

corresponds to the size of partition. This indicates the additional core does not have any impact on the

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

8

number of partition. This implies that the hardware manager cannot automatically optimize the load

increase. Experiment 5 proves that the multithreading helps the hardware manager to optimize the

core utilization to its potential.

 In conclusion, partitioning according to number of node and core is viable. The full potential of

the cores can be seen through multithreading.

6. Acknowledgments

Authors would like to thank Universiti Tun Hussein Onn Malaysia for the support in publishing this

article and also to Gates IT Solution for the incentive to publish.

7. References

[1] Qiu, J., & Zhang, B. Mammoth Data in the Cloud: Clustering Social Images.2012

[2] Thomas Seidl, Brigitte Boden, Sergej Fries, CC-MR – Finding Connected Components in Huge

Graphs with MapReduce, Machine Learning and Knowledge Discovery in Databases, Lecture

Notes in Computer ScienceVolume 7523, pp 458-473, 2012.

[3] Ali, Md Firoj, and Rafiqul Zaman Khan. "The Study On Load Balancing Strategies In

Distributed Computing System." International Journal of Computer Science & Engineering

Survey (IJCSES) Vol.3, No.2, 2012.

[4] W.Kang, H.H.Huang, A.Grimshaw, “Achieving high job executing using underutilized

resources in a computational economy”, Future Generation Computer System, Special

Section: Recent Developments in High Performance Computing and Security, Elsevier, vol.

29. Issue. 3, pp:763-775, 2013.

[5] T. Sterling, T. Cwik, D. Becker, J. Salmon, M. Warren, B. Nitzberg, An assessment of beowulf-

class computing for NASA requirements: initial findings from the first NASA workshop on

beowulf-class clustered computing, in: Proceedings of the IEEE Aerospace Conference, 1998.

http://loki-www.lanl.gov/papers/ieee_aero98/p312.ps.

[6] Zhiquan Sui, Shrideep Pallickara,2011 ,A Survey of Load Balancing Techniques for Data

Intensive Computing, Handbook of Data Intensive Computing, pg 157-168, 10.1007/978-1-

4614-1415-5_6

[7] Christopher A. Bohn, Gary B. Lamont, Load balancing for heterogeneous clusters of PCs,

Future Generation Computer Systems, Volume 18, Issue 3, January 2002, Pages 389-400,

ISSN 0167-739X, 10.1016/S0167-739X(01)00058-9.

(http://www.sciencedirect.com/science/article/pii/S0167739X01000589)

[8] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, 2nd Edition,

Morgan Kaufmann, San Francisco, 1996, p. 17.

[9] Ilic, A.; Sousa, L.; , "On Realistic Divisible Load Scheduling in Highly Heterogeneous

Distributed Systems," Parallel, Distributed and Network-Based Processing (PDP), 2012 20th

Euromicro International Conference on , vol., no., pp.426-433, 15-17 Feb. 2012 doi:

10.1109/PDP.2012.56

[10] George Teodoro, Timothy D. R. Hartley, Ümit V. Çatalyürek, Renato Ferreira: Optimizing

dataflow applications on heterogeneous environments. Cluster Computing 15(2): 125-144

(2012)

[11] Berka, T., Kollias, G., Hagenauer, H., Vajtersie, M., & Grama, (2012). Concurrent

Programming Constructs For Parallel MPI Applications.

[12] Vladimir Shestak, Edwin K.P. Chong, Anthony A. Maciejewski, Howard Jay Siegel,

Probabilistic resource allocation in heterogeneous distributed systems with random failures,

Journal of Parallel and Distributed Computing, Volume 72, Issue 10, October 2012, Pages

1186-1194, ISSN 0743-7315, 10.1016/j.jpdc.2012.03.003.

(http://www.sciencedirect.com/science/article/pii/S0743731512000688)

[13] Lizhe Wang, Dan Chen, Ze Deng, Fang Huang, Large scale distributed visualization on

computational Grids: A review, Computers & Electrical Engineering, Volume 37, Issue 4,

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

9

July 2011, Pages 403-416, ISSN 0045-7906, 10.1016/j.compeleceng.2011.05.010.

(http://www.sciencedirect.com/science/article/pii/S0045790611000796)

[14] Qin-Ma Kang, Hong He, Hui-Min Song, Rong Deng, Task allocation for maximizing

reliability of distributed computing systems using honeybee mating optimization, Journal of

Systems and Software, Volume 83, Issue 11, November 2010, Pages 2165-2174, ISSN 0164-

1212, 10.1016/j.jss.2010.06.024.

(http://www.sciencedirect.com/science/article/pii/S0164121210001718)

[15] R. Ennals, R. Sharp, and A. Mycroft. Task Partitioning for Multi-Core Network Processors. In

Proceedings of the IEEE International Conference on Computer Communications (ICCC),

Mauritius, April 2005.

[16] Rosas Mendoza, C. (2012). Performance Improvement Methodology based on Divisible Load

Theory for Data Intensive Applications. Thesis , Universidad Autonomy de Barcelona.

Department of Computer Architecture and Operating

Systems,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6332177&isnumber=6331

993

[17] Kamil, A., & Yelick, K. (2012). Hierarchical Additions to the SPMD Programming Model.

[18] Kwon, O., Jubair, F., Min, S.-J., Bae, H., Eigenmann, R., & Midkiff, S. (2011). Automatic

Scaling of OpenMP Beyond Shared Memory.

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012099 doi:10.1088/1757-899X/160/1/012099

10

