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Abstract. One of the key problems in studying the non-stationary processes of solid mechanics
is obtaining of influence functions. These functions serve as solutions for the problems of
effect of sudden concentrated loads on a body with linear elastic properties. Knowledge of the
influence functions allows us to obtain the solutions for the problems with non-mixed
boundary and initial conditions in the form of quadrature formulae with the help of
superposition principle, as well as get the integral governing equations for the problems with
mixed boundary and initial conditions. This paper offers explicit derivations for all non-
stationary surface influence functions of an elastic half-plane in a plane strain condition. It is
achieved with the help of combined inverse transform of a Fourier-Laplace integral
transformation. The external disturbance is both dynamic and kinematic. The derived functions
in xt-domain are studied to find and describe singularities and are supplemented with graphs.

1. Problem Definition
The problem under investigation concentrates focuses on distribution of non-stationary boundary
disturbance in a homogeneous isotropic elastic half-plane.

Let us introduce a coordinate system Oxz so that Oz axis is directed in the depth of the half-plane,
while Ox axis corresponds with the edge of the half-planez=0.

We will use dimensionless quantities system (apostrophes mark the dimensionless quantities and
will be omitted in future)
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where L — reference length,t and t — dimensionless and dlmenswnal time, U, W— components of
displacement vectors, which match with the direction of Oxand Ozaxes correspondingly;
G,,, (M n=13) —non-zero components of stress tensor, ¢, y — scalar and vector potentials of elastic
displacements; c,, c,— velocities of tension and shear waves; ¢, — velocity of Raleigh waves, A, p —
Lame parameters; p — continuum density.

Problem definition includes [1]:
— equation of motion (dot accent represents a time derivative from now on)
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— relations between displacement vector and stress tensor components with other potentials:
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— initial conditions:
(p‘r:O :(b‘r:O :O’ W‘r:O :\ij‘c:O :0’ (5)

— boundary conditions:
— no-disturbance in the infinity conditions

(p=O(1), \V:O(l), npu r — oo, r =X +2%; (6)
— generalized conditions on the z=0 boundary:
(oyu, + [31013)|Z:0 =06(x)3(t)d,,
(ogUs + [330_33)|2=0 =03(x)5(1)5,,
where §(e) — Dirac delta function, §,, — Kronecker symbol, m, | =1,3.
Combinations of various values of ao,,B, (m=1,3)parameters describe all the possible boundary

(7

conditions, while o +BZ =0 .
At o, =0, =1, B, =B, =0 the first boundary problem can be observed.
At o, =0, =0, B, =B; =1 — we get the second boundary problem.
Displacements U, =G/, (x,7) and stresso,, =I'",(x,7), (p=12; mk,1=13) as solutions of

problems (2)—(7) with z=0 will be called non-stationary surface influence functions of an elastic
half-plane.

2. Construction of Surface Influence Functions

Let us apply Laplace transform over t time to (2)—(7) and Fourier transform over x coordinate:
FL
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"FL" index of function identifies its Laplace and Fourier transform, g, s — Fourier and Laplace

transformation parameters correspondingly.
From (8)—(11) in the case of the first boundary problem ( p=1 o, =a, =1, =p,=0) and the
second one (p=2, a, =a; =0, B, =B, =1) we can obtain
G{™(0,8) =G5, + G5 (0,9)8;, Gf™(0,5) =G (0,5)8, + G (0,5)3,

pFL
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k. (0,8) =+/d+s, k,(0,8) = «fq +n°’s.

3. Influence Functions in xt- Domain
As transformed functions in (12) are homogenous functions for defining the corresponding functions

in xt-domain, we should use an algorithm of combined Fourier-Laplace inverse transform [5]

Among the functions in gs-domain that we study, the most interesting are anif (q,s), GZFL q,9),
(m,k,1=1,3), as well as T'°77(q,s) . The remaining components, according to(12), are represented in
xt-domain in a where they corresponds to boundary conditions in (7).

By introducing a variable substitution A =q/s, we represent the Fourier-Laplace transformations

of the functions that we are looking to obtain as:
Ui (6,8) = 71 (9)hi (W), G (4,8) = 9 (s)hny (A), (13)
121F3L(q S) YZ (S)h113(7\’) (m!k!I :113)1

where
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Considering that g, (t) = H(t), g,(t) =38(t), where H (¢) — Heaviside step function, as well as the

properties of delta function, we obtain expressions for the analytical form [6] of GZ (q,s) function:
1
G (z.7) = ——gz(r) O (2, r)——ﬂem.(z,r), (m1=13)

z=x+1y, 0,(z,7) =h, [Mz,7)]A.
WhereA =1/iz, ReA<0 mpu (y —>+0); ReA>0 mpu (y >—0), «*» symbol identifies a
convolution of the functions over time.
The function in the xt-domain can be depicted using the equation [7]:
Gy (x,0) = lim G, (2,7) - lim G7, (. ) (m,1=13) (15)

(14)

ASyl(r)=8(‘t),y2(r)=8(1:), the corresponding functions in the xt-domain will assume the
1FL 2FL

following forms: I (q,s) (m,k,1=13), I';;;(q,s)according to (14) should hold generalized first-
and second-order derivatives correspondingly. To avoid the differentiation procedure, which can lead

to complex analytical expressions for the influence functions in xt-domain, we will find the xt-domain

representations of primitives of corresponding functions:
2

d
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where
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. 1 A 1 .
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0,,3(2,7) =y, [Mz, )R, 2= x+iy, (MK, 1=1,3).

Here derivatives are understood in the generalized sense.

This is possible thanks to two reasons. First, the differentiation impairs the properties of the
functions in the xt-domain we are looking for, as they might get singularities that are impossible to
integrate. Second, the influence functions we are looking for are not the ultimate goal. They serve as
the equation kernels of the corresponding governing integral operators or equations in the process of
solving particular problems. Consequently, while solving we can always remove the time derivatives
from these kernels, with, for example, integration by parts.

Let us find the limit values of the functions which form (15)—(16):

R (%,7) = lim A(z,7) =-'§ (17)
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By substituting (17)—(18) into (14)—(15) we will obtain the function in the xt-domain with different
values of t/|x| :
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where
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Ry (%, 1) = (1% = 21) +47 Ky (%, Do (X,0), Ry (,7) = (12X~ 21)" = 41 Ky (X, D)k (X, ),
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Taking (19)—(21) into consideration, we rewrite the derivations for the influence functions:
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Figure 1 demonstrates influence functions, which describe the normal displacements under the

effect of normal (solid line) and tangential (dashed line) load. Dot-and-dash line shows gaps

corresponding to the front lines of the Raleigh waves [2].
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Figure 2 shows influence functions that describe the tangential displacements under the effect of
tangential (solid line) and normal (dashed line) loads. Dot-and-dash line, as before, depicts the gaps in
the fronts of Raleigh waves.

4. Conclusion

As a result, the influence functions for elastic half-space have been obtained. Some of these functions
were applied for solving non-stationary problem of a mobile surface load [3,4], as well as in a series of
works on solving the non-stationary contact problems [5-7].
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