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Abstract. The article describes the algorithm for branch and bound method for solving the 

concave programming problem, which is based on the idea of similarity the necessary and 

sufficient conditions of optimum for the original problem and for a convex programming 

problem with another feasible set and reverse the sign of the objective function. To find the 

feasible set of the equivalent convex programming problem we construct an algorithm using 

the idea of the branch and bound method. We formulate various branching techniques and 

discusses the construction of the lower objective function evaluations for the node of the 

decision tree. The article discusses the results of experiments of this algorithm for some 

famous test problems of a particular form.  

1. Introduction 

The concave programming problem has many applications in various fields of human activity 

(medicine, biology, technology, economics). Very often a model of concave programming problem 

encountered in the decision theory, concave programming problems applied for solving equilibrium 

problems, complementarity problems and others. Thus, it can be stated a serious interest in the 

construction an effective methods [1-4]. 

The main methods for the concave programming problem are based on the ideas of the cutting-

plane methods, element methods and techniques of branches and borders based on the decomposition 

of the admissible set. However, most of these methods do not provide a solution in a reasonable time 

for practical problems [1,4]. 

In this paper we propose a different approach of branch and border method. The idea of this approach 

is based on the theoretical result - the similarity of the necessary and sufficient conditions for optimum 

some convex programming problem and original concave programming problem. Thus, the branch 

and bound method is only necessary in order to build this equivalent auxiliary convex programming 

problem. This theoretical result for the concave programming problem with linear constraints has been 

proposed and substantiated in [5,6]. 

 So, we suggest a generalization of this theoretical result to the case of the feasible set defined by a 

system of inequalities with concave functions, formulate a general scheme of branch and bound 

method for solving the concave programming problem, an one algorithm for the special form of a 
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concave programming problem and shows the results of experiments on a series of well-known test 

problems [7]. 

 

2. Theoretical aspects  

Suppose that in Euclidean space nR  we consider the problem  

min ( )
D

f



x

x ,      (1) 

where { ( ) 0, }n iD R f i I   x x , {1,2... }I m , ( ), ( )if f  i I  are smooth concave functions. 

As known, this problem can be several local minima. The global minimum is among them.  

 We formulate the necessary conditions for a local minimum the problem (1) known as Lagrange 

principle (for example, [8]). Each point which satisfies the necessary conditions for a local minimum 

is called a stationary point. 

Theorem 1. If the point 
* Dx  is a local minimum for problem (1), then there are exists numbers

* 0iy  , 0,1...i m , such that: 

* * *

0

1

( ) ( )
m

i i

i

y f y f


  0x x ,    (2) 

* *( ) 0, 1...i iy f i m x .    (3) 

 It is obvious that the conditions (2) - (3) are equivalent to the following condition 

*

* * *

0

( )

( ) ( )i i

i I x

y f y f


  0x x ,    (4) 

where 
* *( ) {i I ( ) 0}iI f  x x  is the active indices set in point 

*
x . Note that finding the number 

*

0y  can be neglected, if the problem (1) satisfies the regularity conditions: gradients of functions in 

stationary point  *

1
( )

m

i i
f


 x  is a linearly independent system.. 

 Choose a subset of indices 0I I . Define an auxiliary convex programming problem 

0

max ( )
D

f



x

x ,     (5) 

where 0 0{ ( ) 0, }n iD R f i I   x x .  

 Theorem 2. The solution of problem (1) is the solution of problem (5) with 
*

0 ( )I I x . 

 Prof. The problem (5) is a convex programming problem, therefore, any of its local minimum 

points is a global minimum point. For convex programming problem stationary point conditions are 

also sufficient conditions for the global optimum ([8]): 

0

* * * *

0 ( ) ( )i i

i I

y f y f


  0x x ,    (6) 

* *

0( ) 0,i iy f i I x .     (7) 

 So, for 
*

0 ( )I I x  conditions (2)-(3) and (6)-(7) are the same. It is obvious that any local 

minimum point of problem (1) is a solution some problem of form (5). Conversely, if the point 
*

x

solves the problem (5) and 
* Dx , then 

*
x is the stationary point of the problem (1).  

 Consequently, the solution of the problem (1) can be found as a point of local minimum obtained as 

the solution of the problem (5) for some index set, with a minimum value of the objective function. 

Therefore, it can be found by trying all possible subsets of indices and solution for their auxiliary 

problem (5). 
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 It should be noted that the problem (5) for some subset 0I I
 may have empty feasible set. 

Consequently, the method of solving the auxiliary problem should have a way to determine this fact. 

 An effective way to solve the auxiliary problem (5) can be a solution of its dual problem: 

min ( ),
Y





y

y
      

(8) 

where objective function defines as ( ) sup ( , )
nR

L



x

y x y  with 

0

0( , ) ( ) ( )i i

i I

L y f y f


 x y x x  and 

feasible set has the form 1 0 0{ 0, , 0, }m i iY R y i I y i I     y . A simple form of this set may 

allow the use of less sophisticated computational methods for solving the problem (8). In addition, by 

the solving of the dual problem (8) we can conclude about the incompatibility of the restrictions of 

problem (5): if objective function of problem (8) is unbounded from bottom in its feasible set, then the 

problem (5) has no solutions. 

 

3. The general scheme of branch and bound algorithm  

So, as noted in the previous section, the solution of problem (1) can be found by searching all possible 

subsets 0I I . Thus, it is possible to organize this search with using the branch and bound method is 

constructed as follows.  

 General scheme. We denote 0I  , recf   . In each node of the decision tree following 

actions are performed: 

1. The convex programming problem (5) is solved (for example, using the dual problem (8)). Note 

this solution as 'x . If found that the feasible set of the problem (5) is empty, the branching is 

not performed and returns to the parent node of the decision tree. Note that in the root node of 

the decition tree point 'x  will be the point of the absolute maximum of the function ( )f   if 

such maximum exists.  

2. Calculate the lower bound evaluation 'lowf of objective function for node and all its child 

subtree. 

3. If 'low recf f , the branching is not performed and returns to the parent node of the decision 

tree. 

4. If ' Dx , then 'x  is the stationary point pf the problem (1). If ( ')recf f x , then

( ')recf f x  and we memorize a point 'x  as a possible solution of problem (1). 

5. We perform the branching. Choosing indexes are not yet included in the feasible set 

0{ , }J i i I i I   . For each index j J  we construct child node with 0 0 { }I I j  . So, a 

count of child nodes for current neode is equal to the cardinality of the set of indices J . The 

order of enumeration indices form set J  is not significant. 

  

 Note that the general scheme is principled. To implement it, we need a way for solving the problem 

(5), the ability to determine that the feasible set is inconsistent, the method of calculating the lower 

bound evaluation of the objective function for the node and its child subtree. The process of branching 

as described in step 5 is very general and does not preclude re-examination of the same set under a 

different order enabling the restrictions in it. However, this method guarantees branching viewing 

subsets of this. 

 We should also discuss the construction of the lower bound evaluation of the objective function for 

the node. Traditionally, for construction of the branch and bound methods is expected that the 

optimum value of the auxiliary problem solved in a node can be used as an evaluation for the node. 

But in this case it is not. 
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 Indeed, let the auxiliary convex programming problem is solved with its dual problem. Let the 

fixed node of the tree is constructed for a certain set of indices 1I   and to branching some index 

1t I  is added. So, 
2 1 {t}I I   and we have two duals problems 

1
1min ( )

Y


y
y  and 

2
2min ( )

Y


y
y where   

1 1( ) sup ( , )
nR

L



x

y x y , 2 2( ) sup ( , )
nR

L



x

y x y , 

1

1 0( , ) ( ) ( )i i

i I

L y f y f


 x y x x , 

2 1

2 0 0( , ) ( ) ( ) ( ) ( ) ( )i i i i t t

i I i I

L y f y f y f y f y f
 

     x y x x x x x , 

1 1 1 1{ 0, , 0, }m i iY R y i I y i I     y , 2 1 2 2{ 0, , 0, }m i iY y R y i I y i I      . 

 Obviously, 1 2Y Y . So, for 1y Y  we have 1( ) sup ( , )
nR

L



x

y x y  and for 2y Y  - 

2 ( ) sup ( , )
nR

L



x

y x y , where the Lagrangian 1 1( , ) ( ) ( )o

i I

L y f y f


 x y x x  is constructed for full 

set of indeces of the problem (1). Consequently, 
2 1

2 1min ( ) min ( )
Y Y
 

 


y y
y y . The same happens with the 

values of the objective function of the primal problem (5). Thus, the addition of new constraint can 

reduce the objective function value at the optimum auxiliary problem in the node. 

 

4. An algorithm of branch and bound method 

Consider the simplest form of the problem (1):  

min ( )
D

f



x

x       (9) 

where ( ) 0.5 , ,f Q d x x x x  - quadratic function with symmetric negative definite n n  

matrix Q , nd R  and feasible set has a form { , 1.. }n i i iD R x i n     x . It should be noted 

that despite its simplicity, this type of problem is computationally difficult to solve, because it has 2n
 

local minima. Nevertheless, this type of problem allows us to formulate specific rules for the branch 

and bound method.  

1. An easy way to solve the auxiliary problem (5) in the node tree. The dual problem to (5) also 

has the form of quadratic programming problem and there is an explicit formula for obtaining 

the solution of the direct problem (5) 'x  with solution of dual problem 'y : 

1 T' [ ']Q d A  x y  ([5]).  

2. Another rule for branching. The decision tree will be in binary tree form. In each node of this 

tree we choose the next variable for branching, for example tx . In one of child nodes we solve 

the problem with additional constraint t tx   and in another child node - t tx  . So, in the 

step 5 of general scheme we choose a variable, but not constraint. Moreover, because the 

variable is not found in other limitations, there is no possibility of constructing a problem (5) 

incompatible. So, step 1 of general scheme will be easier. 

3.  The rule for calculate of lower bound evaluation. This rule is based on using known bound 

values of each variable. Let we have the solution of problem (5) 'x  in some node Write the 

objective function: 

1 1 1

( ) 0.5
n n n

ij i j i i

i j i

f q x x b x
  

  x  

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012005 doi:10.1088/1757-899X/158/1/012005

4



 

 

 

 

 

 

 It can be seen that the lower value of the function in stationary points obtained in the child 

subtree, we can estimate the sum of lower bound evaluation of each term. Thus, the lower 

bound evaluation is the same sum, in which coordinates uncommitted variables are replaced 

with the bound values that give a minimum term. For example, if the only uncommitted variable 

tx  evaluation will be as follows: 

1, 1, 1,

0.5 ' ' '
n n n

low ij i j i i

i i t j j t i i t

f q x x b x
     

      

2 2

1,

min{ ' , ' } 0.5min{ , } min{ , }
n

tj j t tj j t tt t tt t t t t t

j j t

q x q x q q b b     
 

   . 

 

5. Results of experiments 

We provide the experiment on some known test problems in form (9) which often used in research of 

concave optimization methods [7]: 

 Type 1.Q  is diagonal matrix, d  0 , ( 1 0.1 )jjq n j    , 1j j    , 1 5j j   , 1..j n ; 

 Type 2.Q  is diagonal matrix, 1jd  , 1jjq   , 
j j   ,  /j n j  , 1..j n ; 

 Type 3. Q  is diagonal matrix, d  0 , 1jjq   , ( 1)j n j     , / 2j n j   , 1..j n ; 

 Тип 4.Q  is diagonal matrix, 
jd j  , 1jjq   , 1j j   , 2j j  , 1..j n . 

 Each problem is solved with 3...12n  . In solving was measured the time of operation process, 

the percentage of nodes in the tree, in which auxiliary convex programming problem (5) did not 

solved ( nosolveP ), the percentage of nodes in obtaining the global optimum ( recP ).The Table 1 will be 

given the maximum, minimum and average values of parameters nosolveP  and recP  for each type of 

problem.  

 We considered several rules for selecting the order of the variables: 

 Rule 1. Direct order variables, i.e. first fixed variable number is 1i  , then – with number 2i  . 

The last variable will be with number i n . So, the left child node is corresponded the constraint 

i ix   and the right child node – i ix  . 

 Rule 2. Reverse order variables, i.e. first fixed variable number is i n , then – with number 

1i n  . The lasr variable will be with number 1i  . So, the left child node is corresponded the 

constraint i ix   and the right child node – i ix  . 

 Rule 3. More intellectual case based on the analysis of the deviation of the boundary values of each 

variable from its value at the absolute maximum point of function ( )f  . Note absx  is the absolute 

maximum point of function ( )f  . The order for variables is defined by sorted order of values 

max{ , }i i

i abs i abs ix x     . In this case left child node will be corresponded to those constraint 

i ix   or i ix  , which bound has maximum deviation of value of i  variable form absolute 

maximum point 
i

absx . 

 A detailed analysis of the overall process time showed the presence of proportion to the percentage 

of nodes in the tree, in which auxiliary convex programming problem (5) are solved (1 )nosolveP . In 

general, the calculation time ranged from a few seconds for 3..6n   up to 8 hours at 12n  . The 

sharp increase in overall process time observed since 9n  . Obviously, this was due to an increase in 

the computational complexity of solving the auxiliary convex programming problem in the tree nodes. 

 The results of experiments were carried out in the Table 1. So, we make the following conclusions 

on the basis of the experiment: 
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1. The solution of Type 1 and Type 4 problems is primarily for upper bounds of variables. So, 

value of recP  for Rule 1 is large, while for Rule 2 it is sufficiently small. Thus, in this case, Rule 

2 of the order of enumeration variables is preferable.  

2. The solution of Type 2 problems is at the lower boundaries of variables. Therefore, Rule 1 of 

the order of enumeration variables is preferable. 

3. The Rule 1 and Rule 2 of the order of enumeration variables do not account for problems 

specific. Therefore, the values recP  are very different depending on the type of problem. When 

using Rule 3 is visible that indicator recP   is stabilized regardless of the type of problem. On 

average for the optimal solution of problem (1) is sufficient to look a little less than 10% of the 

decision tree.  

4. Dynamics of the indicator nosolveP  does not allow to make qualitative conclusions about the 

effectiveness of Rule 3. For example, in the problems of Type 2 and Type 4, percentage of 

nodes in the tree, in which auxiliary convex programming problem (5) is not solved, is large 

enough, and for problems of Type 3 - is very small. This is due to low lower bound evaluation. 

 

Table 1. A results of experiments. 

   nosolveP  recP  

min avg max min avg max 

Type 1:       

     Rule 1 0 0,04393 0,0967 0,8895 0,9636 1 

     Rule 2 0,258 0,3851 0,4211 0,0053 0,0803 0,0952 

     Rule 3 0,258 0,3851 0,4211 0,0053 0,0803 0,0952 

Type 2:       

     Rule 1 0,2666 0,798 0,988 0,0053 0,108 0,266 

     Rule 2 0 0 0 0,933 0,9838 1 

     Rule 3 0,5333 0,7251 0,8725 0,0053 0,0847 0,266 

Type 3:       

     Rule 1 0 0,0119 0,0293 0,4904 0,5333 0,5056 

     Rule 2 0,1333 0,165 0,1935 0,0097 0,091 0,266 

     Rule 3 0,1333 0,1502 0,18 0,0097 0,091 0,266 

Тype 4:       

     Rule 1 0 0 0 1 1 1 

     Rule 2 0,4 0,729 0,6132 0,0097 0,091 0,266 

     Rule 3 0,4 0,729 0,6132 0,0097 0,091 0,266 

 

6. Conclusions  
In general, the experiments leads to the conclusion that the approach used in the article in the 

construction algorithm of branch and bound method, can be quite competitive in solving practical 

problems of concave programming. Prospects for the development of this method are related to the 

construction of good lower bounds in the tree nodes and the possible use of parallel computing.   
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