

One algorithm for branch and bound method for solving

concave optimization problem

A A Andrianova
1
, A A Korepanova

2
 and I F Halilova

2

1
Department of System Analysis and Information Technologies, Kazan (Volga

Region) Federal University, Kazan, Kremlevskaya st. 18, Russia
2
Master program Fundamental Informatics and Information Technologies, Kazan

(Volga Region) Federal University, Kazan, Kremlevskaya st. 18, Russia

E-mail: Anastasiya.Andrianova@kpfu.ru

Abstract. The article describes the algorithm for branch and bound method for solving the

concave programming problem, which is based on the idea of similarity the necessary and

sufficient conditions of optimum for the original problem and for a convex programming

problem with another feasible set and reverse the sign of the objective function. To find the

feasible set of the equivalent convex programming problem we construct an algorithm using

the idea of the branch and bound method. We formulate various branching techniques and

discusses the construction of the lower objective function evaluations for the node of the

decision tree. The article discusses the results of experiments of this algorithm for some

famous test problems of a particular form.

1. Introduction

The concave programming problem has many applications in various fields of human activity

(medicine, biology, technology, economics). Very often a model of concave programming problem

encountered in the decision theory, concave programming problems applied for solving equilibrium

problems, complementarity problems and others. Thus, it can be stated a serious interest in the

construction an effective methods [1-4].

The main methods for the concave programming problem are based on the ideas of the cutting-

plane methods, element methods and techniques of branches and borders based on the decomposition

of the admissible set. However, most of these methods do not provide a solution in a reasonable time

for practical problems [1,4].

In this paper we propose a different approach of branch and border method. The idea of this approach

is based on the theoretical result - the similarity of the necessary and sufficient conditions for optimum

some convex programming problem and original concave programming problem. Thus, the branch

and bound method is only necessary in order to build this equivalent auxiliary convex programming

problem. This theoretical result for the concave programming problem with linear constraints has been

proposed and substantiated in [5,6].

 So, we suggest a generalization of this theoretical result to the case of the feasible set defined by a

system of inequalities with concave functions, formulate a general scheme of branch and bound

method for solving the concave programming problem, an one algorithm for the special form of a

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012005 doi:10.1088/1757-899X/158/1/012005

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

concave programming problem and shows the results of experiments on a series of well-known test

problems [7].

2. Theoretical aspects

Suppose that in Euclidean space nR we consider the problem

min ()
D

f



x

x , (1)

where { () 0, }n iD R f i I   x x , {1,2... }I m , (), ()if f  i I are smooth concave functions.

As known, this problem can be several local minima. The global minimum is among them.

 We formulate the necessary conditions for a local minimum the problem (1) known as Lagrange

principle (for example, [8]). Each point which satisfies the necessary conditions for a local minimum

is called a stationary point.

Theorem 1. If the point
* Dx is a local minimum for problem (1), then there are exists numbers

* 0iy  , 0,1...i m , such that:

* * *

0

1

() ()
m

i i

i

y f y f


  0x x , (2)

* *() 0, 1...i iy f i m x . (3)

 It is obvious that the conditions (2) - (3) are equivalent to the following condition

*

* * *

0

()

() ()i i

i I x

y f y f


  0x x , (4)

where
* *() {i I () 0}iI f  x x is the active indices set in point

*
x . Note that finding the number

*

0y can be neglected, if the problem (1) satisfies the regularity conditions: gradients of functions in

stationary point  *

1
()

m

i i
f


 x is a linearly independent system..

 Choose a subset of indices 0I I . Define an auxiliary convex programming problem

0

max ()
D

f



x

x , (5)

where 0 0{ () 0, }n iD R f i I   x x .

 Theorem 2. The solution of problem (1) is the solution of problem (5) with
*

0 ()I I x .

 Prof. The problem (5) is a convex programming problem, therefore, any of its local minimum

points is a global minimum point. For convex programming problem stationary point conditions are

also sufficient conditions for the global optimum ([8]):

0

* * * *

0 () ()i i

i I

y f y f


  0x x , (6)

* *

0() 0,i iy f i I x . (7)

 So, for
*

0 ()I I x conditions (2)-(3) and (6)-(7) are the same. It is obvious that any local

minimum point of problem (1) is a solution some problem of form (5). Conversely, if the point
*

x

solves the problem (5) and
* Dx , then

*
x is the stationary point of the problem (1).

 Consequently, the solution of the problem (1) can be found as a point of local minimum obtained as

the solution of the problem (5) for some index set, with a minimum value of the objective function.

Therefore, it can be found by trying all possible subsets of indices and solution for their auxiliary

problem (5).

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012005 doi:10.1088/1757-899X/158/1/012005

2

 It should be noted that the problem (5) for some subset 0I I
 may have empty feasible set.

Consequently, the method of solving the auxiliary problem should have a way to determine this fact.

 An effective way to solve the auxiliary problem (5) can be a solution of its dual problem:

min (),
Y





y

y

(8)

where objective function defines as () sup (,)
nR

L



x

y x y with

0

0(,) () ()i i

i I

L y f y f


 x y x x and

feasible set has the form 1 0 0{ 0, , 0, }m i iY R y i I y i I     y . A simple form of this set may

allow the use of less sophisticated computational methods for solving the problem (8). In addition, by

the solving of the dual problem (8) we can conclude about the incompatibility of the restrictions of

problem (5): if objective function of problem (8) is unbounded from bottom in its feasible set, then the

problem (5) has no solutions.

3. The general scheme of branch and bound algorithm

So, as noted in the previous section, the solution of problem (1) can be found by searching all possible

subsets 0I I . Thus, it is possible to organize this search with using the branch and bound method is

constructed as follows.

 General scheme. We denote 0I  , recf   . In each node of the decision tree following

actions are performed:

1. The convex programming problem (5) is solved (for example, using the dual problem (8)). Note

this solution as 'x . If found that the feasible set of the problem (5) is empty, the branching is

not performed and returns to the parent node of the decision tree. Note that in the root node of

the decition tree point 'x will be the point of the absolute maximum of the function ()f  if

such maximum exists.

2. Calculate the lower bound evaluation 'lowf of objective function for node and all its child

subtree.

3. If 'low recf f , the branching is not performed and returns to the parent node of the decision

tree.

4. If ' Dx , then 'x is the stationary point pf the problem (1). If (')recf f x , then

(')recf f x and we memorize a point 'x as a possible solution of problem (1).

5. We perform the branching. Choosing indexes are not yet included in the feasible set

0{ , }J i i I i I   . For each index j J we construct child node with 0 0 { }I I j  . So, a

count of child nodes for current neode is equal to the cardinality of the set of indices J . The

order of enumeration indices form set J is not significant.

 Note that the general scheme is principled. To implement it, we need a way for solving the problem

(5), the ability to determine that the feasible set is inconsistent, the method of calculating the lower

bound evaluation of the objective function for the node and its child subtree. The process of branching

as described in step 5 is very general and does not preclude re-examination of the same set under a

different order enabling the restrictions in it. However, this method guarantees branching viewing

subsets of this.

 We should also discuss the construction of the lower bound evaluation of the objective function for

the node. Traditionally, for construction of the branch and bound methods is expected that the

optimum value of the auxiliary problem solved in a node can be used as an evaluation for the node.

But in this case it is not.

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012005 doi:10.1088/1757-899X/158/1/012005

3

 Indeed, let the auxiliary convex programming problem is solved with its dual problem. Let the

fixed node of the tree is constructed for a certain set of indices 1I  and to branching some index

1t I is added. So,
2 1 {t}I I  and we have two duals problems

1
1min ()

Y


y
y and

2
2min ()

Y


y
y where

1 1() sup (,)
nR

L



x

y x y , 2 2() sup (,)
nR

L



x

y x y ,

1

1 0(,) () ()i i

i I

L y f y f


 x y x x ,

2 1

2 0 0(,) () () () () ()i i i i t t

i I i I

L y f y f y f y f y f
 

     x y x x x x x ,

1 1 1 1{ 0, , 0, }m i iY R y i I y i I     y , 2 1 2 2{ 0, , 0, }m i iY y R y i I y i I      .

 Obviously, 1 2Y Y . So, for 1y Y we have 1() sup (,)
nR

L



x

y x y and for 2y Y -

2 () sup (,)
nR

L



x

y x y , where the Lagrangian 1 1(,) () ()o

i I

L y f y f


 x y x x is constructed for full

set of indeces of the problem (1). Consequently,
2 1

2 1min () min ()
Y Y
 

 


y y
y y . The same happens with the

values of the objective function of the primal problem (5). Thus, the addition of new constraint can

reduce the objective function value at the optimum auxiliary problem in the node.

4. An algorithm of branch and bound method

Consider the simplest form of the problem (1):

min ()
D

f



x

x (9)

where () 0.5 , ,f Q d x x x x - quadratic function with symmetric negative definite n n

matrix Q , nd R and feasible set has a form { , 1.. }n i i iD R x i n     x . It should be noted

that despite its simplicity, this type of problem is computationally difficult to solve, because it has 2n

local minima. Nevertheless, this type of problem allows us to formulate specific rules for the branch

and bound method.

1. An easy way to solve the auxiliary problem (5) in the node tree. The dual problem to (5) also

has the form of quadratic programming problem and there is an explicit formula for obtaining

the solution of the direct problem (5) 'x with solution of dual problem 'y :

1 T' [']Q d A  x y ([5]).

2. Another rule for branching. The decision tree will be in binary tree form. In each node of this

tree we choose the next variable for branching, for example tx . In one of child nodes we solve

the problem with additional constraint t tx  and in another child node - t tx  . So, in the

step 5 of general scheme we choose a variable, but not constraint. Moreover, because the

variable is not found in other limitations, there is no possibility of constructing a problem (5)

incompatible. So, step 1 of general scheme will be easier.

3. The rule for calculate of lower bound evaluation. This rule is based on using known bound

values of each variable. Let we have the solution of problem (5) 'x in some node Write the

objective function:

1 1 1

() 0.5
n n n

ij i j i i

i j i

f q x x b x
  

  x

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012005 doi:10.1088/1757-899X/158/1/012005

4

 It can be seen that the lower value of the function in stationary points obtained in the child

subtree, we can estimate the sum of lower bound evaluation of each term. Thus, the lower

bound evaluation is the same sum, in which coordinates uncommitted variables are replaced

with the bound values that give a minimum term. For example, if the only uncommitted variable

tx evaluation will be as follows:

1, 1, 1,

0.5 ' ' '
n n n

low ij i j i i

i i t j j t i i t

f q x x b x
     

    

2 2

1,

min{ ' , ' } 0.5min{ , } min{ , }
n

tj j t tj j t tt t tt t t t t t

j j t

q x q x q q b b     
 

   .

5. Results of experiments

We provide the experiment on some known test problems in form (9) which often used in research of

concave optimization methods [7]:

 Type 1.Q is diagonal matrix, d  0 , (1 0.1)jjq n j    , 1j j    , 1 5j j   , 1..j n ;

 Type 2.Q is diagonal matrix, 1jd  , 1jjq   ,
j j   ,  /j n j  , 1..j n ;

 Type 3. Q is diagonal matrix, d  0 , 1jjq   , (1)j n j     , / 2j n j   , 1..j n ;

 Тип 4.Q is diagonal matrix,
jd j  , 1jjq   , 1j j   , 2j j  , 1..j n .

 Each problem is solved with 3...12n  . In solving was measured the time of operation process,

the percentage of nodes in the tree, in which auxiliary convex programming problem (5) did not

solved (nosolveP), the percentage of nodes in obtaining the global optimum (recP).The Table 1 will be

given the maximum, minimum and average values of parameters nosolveP and recP for each type of

problem.

 We considered several rules for selecting the order of the variables:

 Rule 1. Direct order variables, i.e. first fixed variable number is 1i  , then – with number 2i  .

The last variable will be with number i n . So, the left child node is corresponded the constraint

i ix  and the right child node – i ix  .

 Rule 2. Reverse order variables, i.e. first fixed variable number is i n , then – with number

1i n  . The lasr variable will be with number 1i  . So, the left child node is corresponded the

constraint i ix  and the right child node – i ix  .

 Rule 3. More intellectual case based on the analysis of the deviation of the boundary values of each

variable from its value at the absolute maximum point of function ()f  . Note absx is the absolute

maximum point of function ()f  . The order for variables is defined by sorted order of values

max{ , }i i

i abs i abs ix x     . In this case left child node will be corresponded to those constraint

i ix  or i ix  , which bound has maximum deviation of value of i variable form absolute

maximum point
i

absx .

 A detailed analysis of the overall process time showed the presence of proportion to the percentage

of nodes in the tree, in which auxiliary convex programming problem (5) are solved (1)nosolveP . In

general, the calculation time ranged from a few seconds for 3..6n  up to 8 hours at 12n  . The

sharp increase in overall process time observed since 9n  . Obviously, this was due to an increase in

the computational complexity of solving the auxiliary convex programming problem in the tree nodes.

 The results of experiments were carried out in the Table 1. So, we make the following conclusions

on the basis of the experiment:

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012005 doi:10.1088/1757-899X/158/1/012005

5

1. The solution of Type 1 and Type 4 problems is primarily for upper bounds of variables. So,

value of recP for Rule 1 is large, while for Rule 2 it is sufficiently small. Thus, in this case, Rule

2 of the order of enumeration variables is preferable.

2. The solution of Type 2 problems is at the lower boundaries of variables. Therefore, Rule 1 of

the order of enumeration variables is preferable.

3. The Rule 1 and Rule 2 of the order of enumeration variables do not account for problems

specific. Therefore, the values recP are very different depending on the type of problem. When

using Rule 3 is visible that indicator recP is stabilized regardless of the type of problem. On

average for the optimal solution of problem (1) is sufficient to look a little less than 10% of the

decision tree.

4. Dynamics of the indicator nosolveP does not allow to make qualitative conclusions about the

effectiveness of Rule 3. For example, in the problems of Type 2 and Type 4, percentage of

nodes in the tree, in which auxiliary convex programming problem (5) is not solved, is large

enough, and for problems of Type 3 - is very small. This is due to low lower bound evaluation.

Table 1. A results of experiments.

 nosolveP recP

min avg max min avg max

Type 1:

 Rule 1 0 0,04393 0,0967 0,8895 0,9636 1

 Rule 2 0,258 0,3851 0,4211 0,0053 0,0803 0,0952

 Rule 3 0,258 0,3851 0,4211 0,0053 0,0803 0,0952

Type 2:

 Rule 1 0,2666 0,798 0,988 0,0053 0,108 0,266

 Rule 2 0 0 0 0,933 0,9838 1

 Rule 3 0,5333 0,7251 0,8725 0,0053 0,0847 0,266

Type 3:

 Rule 1 0 0,0119 0,0293 0,4904 0,5333 0,5056

 Rule 2 0,1333 0,165 0,1935 0,0097 0,091 0,266

 Rule 3 0,1333 0,1502 0,18 0,0097 0,091 0,266

Тype 4:

 Rule 1 0 0 0 1 1 1

 Rule 2 0,4 0,729 0,6132 0,0097 0,091 0,266

 Rule 3 0,4 0,729 0,6132 0,0097 0,091 0,266

6. Conclusions
In general, the experiments leads to the conclusion that the approach used in the article in the

construction algorithm of branch and bound method, can be quite competitive in solving practical

problems of concave programming. Prospects for the development of this method are related to the

construction of good lower bounds in the tree nodes and the possible use of parallel computing.

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012005 doi:10.1088/1757-899X/158/1/012005

6

References

[1] Strekalovsky A S 2003 Principles of Nonconvex Optimization (Novosibirsk, Nauka)

[2] Strekalovsky A S 2014 Modern Methods for Solving Nonconvex Optimal Control Problems
 IIGU Ser. Matematika 8 141–163

[3] Gruzdeva T V, Strekalovsky A S, Orlov A V, Druzinina O V 2011 Nonsmooth minimization

 problems for the difference of two convex functions Vychisl.Metody Programm 12(4)

 384-396

[4] Audet C, Hansen P, Savard G 2005 Essays and Surveys in Global Optimization (New York,

 Springer) 312

[5] Konnov I V 2010 Sign reversion approach to concave minimization problems Optim.Lett.

 4 491-500

[6] Andrianova A A, Konnov I V 2014 The branch and bound method for concave optimization

 problem in Problem of Theoretical Cybernetics (Kazan, Otechestvo) 23-26

[7] Chinchuluun A, Pardalos P M, Enkhbat R 2005 Global minimization algorithms for concave

 quadratic programming problems Optimization 54 627-639

[8] Sukharev A G, Timokhov A V, Fedorov V V 2005 A course in optimization methods (Moscow,

 Nauka) chapter 4 147-160

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012005 doi:10.1088/1757-899X/158/1/012005

7

