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Abstract. Shift transformations and linear operators generated by shifts have a number of
applications in signal and image processing. This note is concerned with a problem which has
arisen in studying properties of real-world signals and images defined on meshes. For processing
we suggest to introduce in domains of signals and images different semigroup structures.
Semigroup operations give us opportunities to introduce shift transformations of signals and
images. We study norms of polynomial filters generated by shift operators.

Introduction
We deal with a problem of operator theory which has arisen in studying properties of real-
world signals and images. A part of motivation for our work has come from processing of
experimental data in pressure pulse testing. Recall that a basic element in pulse testing is a well
pair consisting of a pulsing well and an adjacent responding well [1]. There is a pair of signals,
respectively. In practice, studying properties of these signals is often used for estimating a
number of characteristics, for example, an average permeability. As is well known, different tools
from functional analysis are involved in that investigation. For example, the Fourier transform is
one such tool, and a wavelet expansion is another. The most basic linear operators in analysis of
signals are shift transformations and their compositions. In particular, in time-frequency analysis
these are the shifts in time and in frequency. Furthermore, there are a number of important
operations in signal and image processing, such as the convolution and the correlation of signals,
which use shift operators. It is also worth noting that shift transformations and linear operators
generated by shifts play a significant role in different areas of functional analysis, in complex
analysis and in dynamical systems. Another part of motivation for our work is a desire to give
a self-contained elementary proof for a special case of the Coburn theorem from the theory of
operator algebras (see, e.g., [2, Theorem 3.5.18]).

This note consists of Introduction and two Sections. In Section 1 we introduce the notations
and recall some definitions and results that will be used in the sequel. In Section 2 we present
results about norms of linear operators generated by shift transformations on the Hilbert space
of square summable sequences.
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1. Preliminaries
In practice signals and images are often defined on meshes of different types. We usually handle
these meshes as sets without any additional structures.

Here, we suggest to consider a domain S of a signal f : S → F as a mesh supplied with an
additional structure, namely, a semigroup operation. In what follows, we shall make use of the
additive notation. Here F denotes either the field of all real numbers R or the field of complex
numbers C.

Let l2(S) be a Hilbert space of all square summable, in general, complex-valued signals:

l2(S) = {f : S → F :
∑
s∈S

|f(s)|2 < +∞}.

Recall that l2(S) is a Hilbert space under the coordinatewise linear operations and with the
inner product defined by

< f, g >=
∑
s∈S

f(s)g(s).

Let {es : s ∈ S} be the canonical orthonormal basis in l2(S) given by the formula

ea(b) =

{
1, if a = b;

0, if a ̸= b.

A semigroup structure on a mesh allows us to introduce in consideration for every element
a ∈ S the shift operator defined by

Ta : l2(S) −→ l2(S) : eb 7−→ ea+b,

where b ∈ S.
In what follows, for simplicity, we assume that S is the semigroup of all non-negative integers

Z+ := {0, 1, 2, . . .} or any its subsemigroup. In practice, for signal and image processing the
author has also made use of the Cartesian products Z+×Z+ and Z+×Z+×Z+ with the natural
operations and with some others in accordance with problems. Of course, those semigroups
are used for one-dimensional, two-dimensional and three-dimensional signals, respectively.
Moreover, the semigroups Z+ × Z+ and Z+ × Z+ × Z+ and their subsemigroups have been
used for matricisations and tensorisations of signals and images (see [3, Part II]).

In the case of the semigroup S = Z+, we have the right shift operator

T := T1 : l
2(Z+) −→ l2(Z+) : en 7−→ en+1.

It is clear that the following infinite Toeplitz matrix M corresponds to the operator T with
respect to the canonical basis {en : n ∈ Z+}:

M =



0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .


.

Of course, the right shift operator T is a linear bounded operator. Thus it is an element of
the C∗-algebra B(l2(Z+)) of all bounded linear operators on the Hilbert space l2(Z+). Moreover,
the operator T is a non-unitary isometry, i.e.,

∥Tx∥ = ∥x∥
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for each x ∈ l2(Z+). Note that T is injective but not surjective.
It is easy to see that the adjoint T ∗ of T is the left shift operator defined by

T ∗(en) =

{
en−1, if n > 1;

0, if n = 0.

Obviously, we have (T ∗)m = (Tm)∗, m ∈ Z+. We denote this operator by T ∗m.
One can easily see that the matrix of the left shift operator T ∗ with respect to the canonical

basis is an infinite Toeplitz matrix which has the following form:

M∗ =


0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 .

Note that the left shift operator T ∗ is surjective but not injective.
Let I : l2(Z+) −→ l2(Z+) be the identity operator. Denote by < e0 > the one-dimensional

linear subspace {λe0 : λ ∈ C} in l2(Z+). Let Q0 : l
2(Z+) −→< e0 > be the orthogonal projector

onto < e0 >:

Q0(

∞∑
i=0

λiei) = λ0, where

∞∑
i=0

λiei ∈ l2(Z+).

Then we have the following relations for the composition operators:

T ∗T = I, (1)

TT ∗ = I −Q0, (2)

In other words, the composition TT ∗ is the orthogonal projector onto the subspace of l2(Z+)
spanned by the vectors en, where n = 1, 2, . . . .

We consider the shifts T and T ∗ as operator generators of filters for signal and image
processing on meshes with semigroup structures. Notice that some standard operations in digital
signal processing have suitable analogs among those filters. That is, we have representations of
operations as operators written by means of the shifts.

In practice, we have used these filters for denoising signals and in combination with
matricisation and tensorisation operations of the Fourier transformation and a wavelet expansion
for further signal and image processing.

2. Main results
We consider an arbitrary linear operator p(T, T ∗) ∈ B(l2(Z+)) which is a polynomial in the
variables T and T ∗ with complex coefficients. Equivalently, one can say that we take an element
of the complex ∗-algebra P generated by T and T ∗. It is worth noting that the algebra P is
not complete. We call elements of P polynomial filters. We have the following lemma about
representations of polynomial filters.

Lemma. Every polynomial filter p(T, T ∗) ∈ P can be represented as follows:

p(T, T ∗) = λ1T
n1T ∗m1 + λ2T

n2T ∗m2 + . . .+ λdT
ndT ∗md , (3)
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where λi ∈ C, (ni,mi) are distinct pairs of non-negative integers, i = 1, . . . , d, and d ∈ Z+ \{0}.
Furthermore, for a non-zero polynomial filter representation (3) with non-trivial coefficients is
unique up to an order of summands.

The sketch of the proof. The possibility to represent a polynomial filter as linear combination
(3) follows from relations (1) and (2). To prove the uniqueness of representation (3) one can
show that the family of operators {TnT ∗m : (n,m) ∈ Z+ × Z+} is linearly independent.�

Let us fix a number k ∈ Z+ \ {0}. For j = 0, 1, . . . , k − 1 we define the Hilbert spaces

Hj =
{
x ∈ l2(Z+) : x =

+∞∑
l=0

λj+klej+kl

}
,

which are subspaces of the Hilbert space l2(Z+). We also define the shift operators as follows:

Tj : Hj −→ Hj : ej+kl 7→ ej+k(l+1),

where l = 0, 1, 2, . . .
Below we present the results about polynomial filters and their norms.

Proposition 1. Let p(T, T ∗) be a polynomial filter and k ∈ Z+ \ {0}. Then there exists

a unitary operator U : l2(Z+) −→
⊕k−1

j=0 Hj such that the following diagram

l2(Z+)
p(Tk,T ∗k)−−−−−−→ l2(Z+)

U

y yU

k−1⊕
j=0

Hj

k−1⊕
j=0

p(Tj ,T
∗
j )

−−−−−−−−→
k−1⊕
j=0

Hj ,

is commutative,i.e., we have the operator equality

p(T k, T ∗k) ◦ U = U ◦
k−1⊕
j=0

p(Tj , T
∗
j ). (4)

Standard properties of operators and their norms together with equality (4) imply

Corollary 1. Let p(T, T ∗) be a polynomial filter and k ∈ Z+\{0}.Then the following equality
holds:

∥p(T k, T ∗k)∥ = ∥p(T0, T
∗
0 )∥.

In the similar way we have the next two statements.

Proposition 2. Let p(T, T ∗) be a polynomial filter and k ∈ Z+ \ {0}. Then there exists
a unitary operator W : Hj −→ l2(Z+) such that the following diagram

H0
p(T0,T ∗

0 )−−−−−→ H0

W

y yW

l2(Z+)
p(T,T ∗)−−−−−→ l2(Z+),
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is commutative,i.e., we have the operator equality

p(T, T ∗) ◦W = W ◦ p(T0, T
∗
0 ).

Corollary 2. Let p(T, T ∗) be a polynomial filter and k ∈ Z+\{0}.Then the following equality
holds:

∥p(T, T ∗)∥ = ∥p(T0, T
∗
0 )∥.

As an immediate consequence of Corollaries 1 and 2 we obtain

Corollary 3. Let p(T, T ∗) be a polynomial filter and k ∈ Z+\{0}.Then the following equality
holds:

∥p(T k, T ∗k)∥ = ∥p(T, T ∗)∥.

Let T be the C∗-subalgebra of B(l2(Z+)) generated by the operator T . The C∗-algebra T is
called the Toeplitz algebra generated by the semigroup , or the reduced semigroup C∗-algebra of
Z+. Note that the ∗-algeba P is dense in the C∗-algebra T with respect to the norm topology of
B(l2(Z+)). From the above statements the following special case of the Coburn theorem follows:

Proposition 3. Let k ∈ Z+ \ {0}.Then there exists a unique ∗-endomorphism φ : T −→ T
of the Toeplitz algebra such that φ(T ) = T k.

The sketch of the proof. The proof consists of two steps. First, we construct the ∗-
homomorphism φ0 : P −→ T which is well-defined in view of Lemma by the formula

φ0(T
nT ∗m) = T knT ∗km.

Second, using Corollary 3, we extend the ∗-homomorphism φ0 by continuity to the ∗-
endomorphism on the whole space T . �
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