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Abstract. Non-overlapping domain decomposition method is applied to a variational 

inequality with nonlinear diffusion-convection operator and gradient constraints. The method is 

based on the initial approximation of the problem and its subsequent splitting into 

subproblems. For the resulting constrained saddle point problem block relaxation-Uzawa 

iterative solution method is applied. 

1.  Introduction 

Domain decomposition methods for the variational inequalities have been  investigated for a long 

time. The most attention has been   paid to Schwarz-type iterative methods for the problems with 

pointwise constraints to solution [1-12]. This type of problems includes obstacle problems, some 

contact problems, Stefan problem on a fixed time level among others. Non-overlapping domain 

decomposition method has been  applied to variational inequalities with constraints to a solution in the 

supposition that the location of free boundary is known [13-15]. 

Convergence of Uzawa-type iterative methods for the constrained saddle point problems has been 

investigated in [16-18].  First general result on the convergence of Uzawa iterative method has been 

proved in the article [16], where sufficient convergence condition has been formulated in terms of 

matrices inequality. In [17] a generalization of this result for wider class of saddle point problems and 

for so-called block relaxation-Uzawa iterative solution method have been investigated. These results 

were applied to iterative solution methods for mesh variational inequalities with gradient constraints 

and for mesh approximations of state and control constrained optimal control problems in the 

numerous subsequent articles. 

In this article we apply the aforementioned results on the iterative solution methods for the 

constrained saddle point problems to non-overlapping domain decomposition method for variational 

inequalities with gradient constraints. 

2.  Variational inequality and its approximation 
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Proposition 1. Under the assumptions (1), (2) variational inequality (3) has a unique solution. 
The proof is based on the theory of variational inequalities with monotone operators [19]. 
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Proposition 2.  Under the assumptions (1), (2) variational inequality (4) has a unique solution.  

3.  Domain decomposition and constructing a saddle point problem 

Let us decompose the domain    into m subdomains ,
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The corresponding composite matrices and operators 
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have block diagonal forms.   

  Using the introduced notations we get the equality  
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Now, variational inequality (5) can be written as the following variational inequality for the vectors 
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Since the operator  0A  is degenerate, we make further equivalent transformation of system (8) by 
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Block relaxation-Uzawa method with a preconditioner D for solving (9) reads as follows: 
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Thus, we have to solve on every iteration the system of inclusions to find 1kp  and then the 

systems of linear equations to find 1ku  and 1ks . We emphasize that owing to the block diagonal 

form of the operators and matrices the inclusion for 1kp  and equation for 1ku  are split up into 

uncoupled systems, corresponding to the subdomains. Moreover, since every operator iik 1  for 

mi ,,2,1   has block diagonal form with 22  blocks, we can easily find the exact solutions of the 

corresponding inclusions in explicit forms.  
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