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Abstract. This paper deals with a mathematical model of the phase transition of the first kind 

at the initial stage of forming drops in a liquid or in melted state in a volume of steam with a 

fixed charge on drops. The model of the process is represented by superposition of random 

diffusion and jump stochastic processes. The algorithms for solving stochastic differential 

equations (SDEs) of the model of processes, which form the cluster size, allow one to calculate 

a distribution function of drops according to their size. The kinetic approach makes possible 

evaluate the role of the Rayleigh capillary instability at the initial condensation stage and to 

employ the analysis of electrodispersion mechanisms in the production of metal and 

semiconductor powders. 

1. Introduction 
Numerical investigation of phase transitions as processes of particle association in clusters is 

connected with many applications, such as the formation of aerosols in the atmosphere (gas and dust 

interplanetary clouds, comet tails, etc.), condensation in high-velocity gas streams issuing from a 

nozzle, polymerization and crystallization, metals vapor deposition and some others. 

Vapor condensation phenomena at the nucleation step in terms of non-equilibrium kinetics of 

physical and chemical processes can be viewed as a continuous process of forming the germs clusters 

[1]. The numerical model of the initial fluctuation stage of condensation has been developed on the 

assumption that clustering germs of liquid drops in the vapor are represented by the diffusion in the 

phase space of the clusters size, the density of the transition probability of the process being described 

by the Fokker-Planck-Kolmogorov equation (FPK) [2, 3]. Statistical algorithms for solving the SDE, 

which are equivalent to the FPK were built based on of numerical methods for solving SDE [4, 5]. 

Also, efficient algorithms for modeling an inhomogeneous Poisson flow have been developed to 

simulate random jump processes [6]. 

Earlier the stochastic models and the kinetic approach to the simulation of non-equilibrium 

collisional processes in gases and plasmas [7] and, also, the formation of new-phase islands [8] and 

3С–SiC powders [9] at the initial stage of vapor condensation were generalized to the formation of 

porosity in solids. This problem was considered as specific features of the development of pores (as 
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new-phase germs) in metal [10] and 3С–SiC silicon carbide [11]. In this case, at small times instants 

ranging from 1010  to 410 s, the phase transition of the first kind occurs, which accompanies e  

implantation of ions. The above phenomena are caused by fluctuations of the thermodynamic 

parameters of the “gases or vacancies in a crystal lattice” [2] or "vapor and liquid (melt)" [9]. 

How does the fluctuation of the phase transition stage of the vapor condensation occur if the drops 

acquire a charge in the discharge plasma, or as a result of thermionic emission, or otherwise? 

According to the criterion of the Rayleigh capillary instability, beginning with a certain cluster size the 

drops start crushing. In the "open" physical system, the non-equilibrium distribution of the germs size 

becomes bimodal. We use the generalized asymptotically unbiased method of the Rosenbrock type for 

solving the SDE (for the evolution of the cluster size) at irregular time discretization comprising the 

moments of drops division. Numerical simulation can be claimed in the problems of dispersing a 

charge during the preparation of powders. For the composite of particles, it is necessary to include 

particles of increased strength and resistance to various kinds of damage such as crystal defects, so it is 

necessary to obtain amorphous powders. Models of the non-equilibrium phase transition are based on 

the methods developed in the plasma physics [12] as well as computational experiments, object-

oriented plasma kinetics codes [13] and calculations of dusty plasma charging [11]. 

2. A clustering model and approximation used 

The simulation of the fluctuation stage of phase transition (PT) of the first kind for the cluster 

formation process is carried out under conditions of an "open" physical system. Non-equilibrium 

processes, forming clusters, cause the PT fluctuation instability. 

The process of forming clusters (aggregates of molecules formed in the course of the volume 

condensation or on the surface of a solid) is considered as consecutive reactions: 

,211 aaa   
...

 
,11 nn aaa   

leading to diffusion in the clusters sizes space. 

According to the ideas discussed in [1], the clusters are formed as a result of the fact that to the new 

phase germs a greater number of particles is sticked than vaporized per time unit. Fluctuations of 

thermodynamic parameters (such as temperature, supersaturation and vapor pressure) cause clustering 

the germs at a new thermodynamic phase. The growth of the cluster size g is described by a random 

diffusion process in the phase space of the cluster sizes G. The kinetic Kolmogorov-Feller equation for 

the distribution density of germs according to their size has the following form 
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where g  is the number of atoms in the cluster, D  
 is the diffusion coefficient;

 ),( tg  is free energy 

of nucleus formation (or Gibbs energy); S is the source of particles forming a nucleus (the source of 

“monomers”); Q is the “monomers” particles run-off. The diffusion coefficient is defined as follows: 

,)2()()3()4()( 2/12/13/23/12

1

3/2  mkTVnggD lk   

where lV  is the volume per one particle of the liquid phase, )(Tkk    is the accommodation 

coefficient of particles on the cluster surface, 1n  is the density of the gaseous phase, m  is  the mass of 
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vapor molecules. The value dgtgf ),(  determines the number of clusters in the size range (per 

volume unit of the medium). The range of variables: ].,0[],,2[ max  tgg  

The function ),( tgf  is normalized so that the volume unit is, at least, one cluster comprising no 

less than two particles. Macroscopic characteristics of the gas-vapor mixture (such as the number of 

clusters per volume unit, etc.) can be calculated with allowance for the function ),( tgf . The 

computer implementation of mathematical models of clustering (1) requires the solution of quasilinear 

partial integro-differential equations of the second order. In this paper, this equation is solved with the 

help of the stochastic analog method [2], which is based on the theorems according to which the 

kinetic equations are uniquely associated with stochastic differential equations [3]. 

Let us write down the SDE for Markov random process (MP) g (t), whose density function is a 

solution of the corresponding kinetic equation (1). 
Let us consider the case 0QS . If from physical considerations the following expression holds: 
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then equation (1) corresponds to the SDE in the Stratonovich sense: 
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If (*) is not satisfied, then equation (1) will correspond to the SDE in the Stratonovich sense  
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An additional factor of non-disequilibrium of the condensation process is the instability of large drops, 

which is associated either with the fact that the vapor moves with a certain velocity (the Weber 

criterion), or condensation drops are in conditions where there is charge on the drop surface [14]. 

There is implemented a reaction lki aaa  , where indices mark the drops, whose specific choice 

occurs when the law of conservation of mass of clusters holds. In the Kolmogorov-Feller equation (1) 

one should take into account the type of a collision model (drops decay) 
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   (5) 

where   is the Dirac delta-function, and the functions ,c  and a set R  are determined by 

properties of the medium. The function   is a scalar non-negative function, which specifies 

probabilities of crushing the drops and also determines the decay intensity. Then equations (1), (5) 

under condition (2) correspond to the SDE, combining diffusive and the Poisson components: 
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(6) 

where the function z  is determined by the type of drop decay,   is the Poisson random measure on 

the set  ],0[ finishT  with the characteristic measure 

 ,)(,,)()(  AdA
A

  (7) 
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)( tz  is the value of the function at the point )0( t . As is noted in [15], the introduction of the 

dependence of the function ),,( tg  on g and t makes the Poisson measure inhomogeneous, but it 

allows one to form a broader class of Markov processes than in the case when )(  is independent of 

g and t.
 

The next section describes the numerical method for solving stochastic differential equations used. 

Note that the numerical simulation of the SDE (6) requires not only the modeling of the Wiener 

component, but also an inhomogeneous Poisson measure, which is a special case of Poisson ensemble 

[6]. 

3. Numerical Methods for solving Stochastic Differential Equations 

In general, the Cauchy problem for stochastic differential equations in the sense of Ito is written as 

 ],0[,)(),(),(~),()( 001 fihishTtYtYtdWtYdttYHtdY   , (8) 

where Y(t) is a continuous random process of dimension n; W(t) is m-dimensional standard Wiener 

process; ),(1 tYH  is n-dimensional vector function; ),(~ tY  is the matrix function of the size nm. 

The initial state of the system is set by a random vector 0Y . If the matrix ),(~ tY  is differentiable, then 

the Cauchy problem for the SDE (8) in the Ito sense corresponds to the Cauchy problem for the SDE 

in the Stratonovich sense 
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Equations (8) and (9) are equivalent. The one-dimensional probability density function of the SDE 

solutions satisfies the direct Kolmogorov equation 
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where 0  is the probability density function of the distribution of the phase coordinates at the initial 

time 0t , TB  ~~ , jkik

m

k

ijb  ~~

1




   is the diffusion matrix.  

For the numerical solution of the SDE in the Stratonovich sense (9) we use the generalized method 

of the Rosenbrock type 
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1  .  

This method converges with second order for the SDE systems with single noise and is asymptotically 

unbiased. These properties of the method allow one to use it for solving unstable SDE systems with 

high accuracy. 

Here kY  is the numerical solution of (9) at a grid node kt ; kkk tth  1  is the integration step; 

T
nkkk ),,( 1    is the vector of mutually independent normal random variables with zero mean and 

unit variance; )(~ l
j  denotes the j-th column of the matrix )(~ l ; I is the identity matrix; Ya l  /)(  is the 
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Jacobi matrix. We supplement the stochastic differential equation (9) with a stochastic integral with 

respect to the Poisson measure 

 00 )(,)(),),(()(),(~),()( YtYdtdttYztdWtYdttYHtdY  


   , (12) 

),,( tYz  is n-dimensional vector-function;   is the non-negative scalar function defining 

characteristic measure (7); the set nR . 

Let us write down the algorithm of the simulation of the SDE solution with a Poisson component 

(12) when the Poisson measure is homogeneous: 

previously, for each trajectory we simulate the time instants of the trajectory discontinuity points (for 

model (1) these are the time instants of decay) fihishl T ,...,1  by the formula sss   1 , 00  , 

where s  are independent random variables with the probability density ))(exp()()( xxp   

(according to the formula )(/ln  ss  , s  are independent uniformly distributed random 

variables on the interval (0,1)); 

0) k:=0; simulate according to the specified initial values; 

1) solve equation (9) on the interval ],[ 1kk   
by numerical method (11) with the step h and find 

1kY  at the time instant 1k ; the step  h should be coordinated with the transition intensity, for 

example, )(/1.0 h ; 

2) k := k + 1; 

3) simulate a random variable   according to the density ),(/)()(  xxp   then 

),,(:  kkkk YzYY  ; 

4) if Tk  , then go to step 1, otherwise the trajectory simulation is completed. 

Using the method of maximum cross-section, the algorithm can be generalized to the case of 

inhomogeneous Poisson measure [6]. 

4. Numerical Experiments 

With the algorithm proposed let us carry out the numerical simulation, illustrating the formation of the 

condensation nuclei with a fixed charge on the drops with the diffusion coefficient and the Gibbs 

energy of the form 

 
3/2

0gDD  , (13) 

 3/13/2  cgbgagchstchem , (14) 

where agchem  , )(   a , and )(     is the difference between the chemical 

potentials of phases, and V3/2   and V  is the volume of a water molecule. The second term in 

(14) is 
3/2bgst  , where   3/23/1)36( Vb    and    being the surface tension at the boundary of 

a drop. The third term in (14), related to the drop charge, is 
3/1 cgch , where eZc ~  with Z  

being the drop charge measured in thousands of elementary charges. We assume that the drop charge 

is matched in accordance with [9, 11, 12]. For coefficients (13) - (14), the equation model (6) takes the 

form 
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where 
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According to the Rayleigh criterion for the charged drops of radius dr  with a constant charge Z  the 

instability condition in dimensionless form looks like the following [14]: 

 

1
16 3

2


dr

Z
W


. 

We have studied the fluctuation stage of the phase transition of the water vapor condensation with 

allowance for the Rayleigh instability criterion of the charged drop [14]. In this case the temperature 

KT 350 , the pressure vapor aMp  5.0 , the saturation 2s , the value of a charge is measured in 

16106.1   coulomb, the clusters concentration of the condensation vapor is 35103  cm . The 

parameters were taken from [16]. The parameters (figures 1-5) provide the value of the dimensionless 

time step 111043.5 h  s. We have considered the following dimensionless parameters of the model:  

.1)()(,1)(),1,0(,1,25.0,25,366613.2,24318.0 0  


 dkTDcba  (17) 

The Gibbs energy (14) for the model parameters (17) is shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Gibbs energy (14), (17) of 

forming drops (with the drop charge) as a 

function of the cluster size g . 

 

For the numerical solution of SDE (15) with parameters (16)-(17) we used the algorithm 

developed. The grid on the interval [0, 30] is constructed for each trajectory of the numerical solution 

and includes a uniform grid with the step 5.0h and all the time instants of the drop decay. The 

simulation of the drop decay time instants was carried out by the formula 

30,,...,1),(/ln,0 10   finishkTkk Tskksss
T

 . The RAND pseudorandom 

generator was used for the simulation of uniform random variables   on the interval [0, 1]. In the 

numerical experiment, 
610  trajectories of the solution were used.  

The initial conditions were chosen from the “critical” area of energy values molkJkT /3~ . 

The critical value critg  is found from the condition  0/  g  . The initial cluster size was set 

larger than the critical size ( 274,420,400 max0  critggg ). Since the initial value was not 

random but the same for all simulated trajectories, then the distribution density of nuclei clusters at the 

initial time is the delta-function. The figures show the evolution of the distribution of clusters size of 

the water (figures 2, 4 without taking into account the drops charge; figures 3, 5 with the drops 

charge).  

The drops decay as a result of capillary instability leads to a non-equilibrium distribution of the 

clusters size (figures 3, 5).  
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Figure 2. The evolution of the distribution of cluster size. (without drop charge). 

 

Figure 3. The evolution of the distribution of cluster size. (with the drop charge) 

 

 

 
Figure 4. Histograms of the cluster size 

distribution (without drop charge) at three time 

instants. 

 
Figure 5. Histograms of the cluster size 

distribution (with the drop charge) at three 

time instants. 
 

The algorithm developed allows one to simulate the phase transition of the first kind at the initial 

stage of the drops formation with a fixed charge on the drops. The numerical experiments show the 

fluctuation instability resulting in the bimodal distribution of the condensate drop size. The kinetic 

approach makes possible evaluate the role of the Rayleigh capillary instability at the initial 

condensation stage and to employ the analysis of electrodispersion mechanisms in the production of 

metal and semiconductor powders. 
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