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Abstract. A rectilinear motion of a two-mass system in a viscous incompressible fluid is 

considered. The system consists of a shell having the form of an equilateral triangular cylinder 

and a movable internal mass. The motion of the system as a whole is forced by longitudinal 

oscillations of the internal mass relative to the shell. This mechanical system simulates a 

vibration-driven robot, i.e. a mobile device capable to move in a resistive medium without 

external moving parts. Investigation of the system is carried out by a direct numerical 

simulation. A comparative analysis of the characteristics of the motion and flow regimes 

around the vibration-driven robot is carried out for different internal mass oscillation laws.  

1. Introduction 

Construction of vibration-driven mechanisms has long been of interest to engineers. Descriptions of 

numerous devices with vibrational motive power have appeared in the literature since the first half of 

the 20th century (see review [1]). Today the vibrational motion is a rapidly growing branch of applied 

mechanics and robotics.  

The simplest model of a vibration-driven mechanism can be presented as a two-mass system 

consisting of a closed shell and movable internal mass.  Devices of such architecture are often called 

vibration-driven robots. In a resistive medium the motion of the system as a whole is forced by 

longitudinal periodic oscillations of one body (internal mass) relative to another (shell). Such a 

principle of movement seems to be expedient for mini and micro-robots. Tightness, lack of moving 

external parts (screws, wheels, caterpillar tracks and etc.) are the properties, which allow using the 

robots for non-destructive inspections of miniature technical objects such as thin-walled pipes of small 

diameter, as well as in medicine, as was mentioned by several authors [2, 3]. 

Research of movement capabilities of vibration-driven robots were conducted earlier for medium 

with different resistance laws. In [4-5] the possibility of motion in an ideal fluid with related 
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deformations of the outer shell was considered, articles [6, 7] were devoted to the study of the 

movement on a rough plane in the presence of a Coulomb friction, in [8] the movement on the liquid 

interface was studied. Movement in the Newtonian fluid was considered in [9-14]. 

Despite the simple architecture, the motion control of the two-mass vibration-driven system is a 

non-trivial problem. The movement of such device in a viscous fluid is determined by the fluid-shell 

interaction, which depends on the motion law of the internal mass, the geometry of the shell and the 

range of Reynolds number. In this paper, we consider the problems of improving the efficiency and 

speed of movement due to the choice of a special law of internal mass motion of the wedge-shaped 

vibration-driven robot at the low Reynolds number range. For these purposes, a comparative analysis 

of the characteristics of the motion and flow regimes around the robot are carried out for the simple 

harmonic law of the internal mass motion and the special two-phase law of the internal mass motion 

(characterized by the alternation of fast and slow motion phases), that was obtained in [13] as the 

solution of energy optimization problem on the basis of a simplified model of fluid-shell interaction. 

Motion simulation is carried out on the basis of the OpenFOAM software package [15]. The 

calculations involve both original and modified modules of the package. Calculations are carried out 

on high performance clusters of Kazan Federal University. 

2.  Formulation of the problem 

2.1.  Two-mass system motion 

Consider a system consisting of two rigid bodies. The main body (the shell) of mass M  is located in a 

viscous incompressible fluid, while the second body of mass m  (referred to below as the "internal 

mass") is moving within it. The longitudinal periodic motions of the internal mass relative to the body 

M with which the entire system moves as a whole are investigated. The velocity of the body M  will 

be denoted by 
Mu , and the displacement and velocity of the internal mass relative to the body M  will 

be denoted by s  and s   respectively. The equations of motion of the internal mass and body M  in 

a fixed system of coordinates have the form: 

 FGuMGum MM   )(   (1) 

where F  is the resistance of the medium to the motion of the body, G  is the force of interaction of the 

internal mass and the body M . Eliminating the force G  from (1) and normalizing the velocity u  to 

the amplitude of internal mass oscillations 
0U , the time t  to 

1

0RU


, where R  is the characteristic size 

(length of the side of the shell) of the robot, we obtain the basic equation of motion of the two-mass 

system: 

 F
S

R
uM

2

12     (2) 

Here 2  is the ratio of the movable internal mass to the total mass of the robot ( )(2 mMm  ), 1  

is the ratio of the mass of the viscous fluid, occupying the same volume as the robot, to the mass of the 

robot ( )(1 mMM f  ), S is the cross-sectional area. 

2.2.  Fluid-structure interaction 

The fluid flow around the vibration-driven robot generated by its motion is governed by the Navier-

Stokes system of equations. Normalizing the spatial coordinates, time and velocity by R , 
1

0RU


, 

0U respectively, we get the dimensionless formulation of the governing system in the following form: 

 0
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1
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Where ( )U u v  is the dimensionless velocity, p  is the dimensionless pressure, 
0Re U R    is the 

Reynolds number.  

For solving this problem numerically it is convenient to rewrite governing equations in a moving 

(non-inertial) coordinate system associated with the shell. To retain the governing system in the form 

(3), we determine a new pressure as 

 wxpp ~  

Here the first term is the pressure in the fixed coordinate system, the second term is the inertial 

contribution, w is the acceleration of the moving coordinate system. 

On the surface of the vibration-driven robot the no-slip conditions are fulfilled: 

  0cc vu  (4) 

For specifying conditions at infinity we rewrite (2) in the non-inertial coordinate system. Because 

the acceleration in the fixed coordinate system equals the sum of the acceleration in the moving 

coordinate system and acceleration of the moving coordinate system, we get 

 0
2

12   vF
S

R
u    (5) 

The forces acting on the vibration-driven robot by a viscous fluid in the dimensionless formulation 

are calculated as 

  ndspndsF
SSp   

where   is the viscous stress tensor, S  is the surface of the robot and n  is the surface normal vector. 

The force vector pF  can be expanded into a vertical component yF  (lift force) and a horizontal 

component xF , which consists of the drag force and inertia force. The inertial force acting on the 

cylinder due to the fluid acceleration can be split into two parts: the inertia force of added mass, 

arising due to the local acceleration near the cylinder, and the Froude-Krylov force, which is related to 

the pressure gradient created in the fluid by the flow oscillations. The Froude-Krylov force for the 

considered case can be calculated as 

   ndswxF
Sfk
  (6) 

Taking into account (6), the infinity boundary condition (5) can be rewritten 

 )(
2

12 fkx FF
S

R
u     (7) 

The system of equations (3), (4) and (7) completely describes the motion of vibration-driven robot of 

arbitrary shape in a viscous fluid for a given law of the internal mass motion. 

3.  Numerical model 

3.1.  Spatial and time discretization 

The numerical solution is carried out using the OpenFOAM software package. The computational 

domain is constructed as a rectangular parallelepiped measuring 50×30×1 with an equilateral 

triangular cylinder in the center of it. For modelling the plane flow a three-dimensional domain is used 

in accordance with the software features. In chosen Cartesian coordinate system the edges of the 

parallelepiped are parallel to the main axes, and the plane of flow is parallel to the plane xOy. 

For the discretization of the computational domain we use block-structured grids, generated by 

blockMesh utility of OpenFOAM. Each grid block is decomposed into disjoint hexahedral cells. The 

decomposition in the z-axis direction consists of one cell, which causes the flow in this direction not to 

be calculated due to the two-dimensional problem formulation. 

The discretization of the equations of fluid flow in the OpenFOAM package is carried out by the 

finite volume method (FVM) in the Cartesian coordinate system. The discrete values of the velocity 
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and pressure are localized in the cell centers of the computational grids. To calculate the volume 

integrals over the control volume the general Gauss procedure is used. For the approximation of the 

pressure gradient the linear interpolation is applied. To interpolate the variables in convective terms 

nonlinear NVD (normalized variable diagram) scheme "Gamma" is used. In the diffusion terms, when 

the discretization of the Laplace operator is carried out, the normal velocity gradients on the surface of 

the cells are approximated by using a symmetric second-order scheme with non-orthogonality 

correction (for more details see [16, 17]). 

The implicit Euler scheme is used for the time discretization of the system of equations. The time 

step for all calculations is chosen from the condition, that the maximum Courant number does not 

exceed 0.1. 

3.2.  Iteration scheme 

The resulting discrete problem solution is based on the PISO method implemented in the icoFoam 

solver of OpenFOAM. At each time iteration of the algorithm additional steps for updating the 

boundary conditions (9) are defined. Updating is implemented by the deferred correction scheme. The 

resulting iterative scheme for calculating the values of unknowns on the j-th time layer can be 

represented as follows: 

1. The predictor for the acceleration of the moving coordinate system is calculated as 

 
www

jjj
p  212  

2. The boundary conditions at the input and output boundaries are updated according to (9), where the 

acceleration is calculated as the sum of the predictor and corrector for the old time layer, and the 

velocity is determined by the 2nd order upwind difference scheme: 

3)42( 211  








jjjjj
c

j
p

j uudtuuwwu   

3. The discrete governing system of the fluid motion is solved by the PISO method, the force xF  is 

calculated. 

4. The real acceleration of the system is calculated using the new value of the force: 

jjj F
S

R
w

2

12     

5. The corrector is calculated as 

.www
jj

p
j
c    

We used 5 pressure correction steps in the PISO method. To solve the system of equations for the 

pressure, the preconditioned conjugate gradient (PCG) method with the geometric-algebraic multigrid 

(GAMG) preconditioner was applied. In the GAMG realization we used the Gauss-Seidel method with 

one and two pre- and postrelaxations for smoothing, respectively, and the faceAreaPair algorithm for 

agglomeration of the mesh cells. The systems of equations for the velocity components were solved by 

the bi-conjugate gradients (PBiCG) method with the preconditioner based on an incomplete LU 

factorization. All calculations were distributed according to the MPI technology and the method of 

decomposition of the calculation domain. 

4.   Results of numerical experiments 

The numerical simulation was performed for the simple harmonic and the special two-phase laws of 

the internal mass motion (see fig. 1). Calculations were carried out in the range of Reynolds numbers 

50 < Re < 250 for the following combination of control parameters: 0601  , 6102  , HA  , 

where 75.0H  is the height of the triangle. Calculations were started from different initial 

approximations determined by different initial flow velocities. To examine the stability of motion 

regimes, external disturbances were included into the flow by the Martinez method [18]. 

The next main characteristics of the motion were considered: the average speed aU  and the motion 

efficiency coefficient   [19], which defines the energy consumption due to the body motion by means 
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of an internal motive power. Using angular brackets to denote the average for a period of motion, we 

define them as follows: 

vbr

a
N

N
>U<U 0   

Here )(0 >U<NN  is the minimum power required for the body motion with velocity aU  (the 

values of 0N  for different values of the parameter Re are obtained according to auxiliary calculations), 

)(UNNvbr   is the power expended on the motion of the robot with a fixed average velocity of aU . 

 

 

Figure 1. Harmonic (dashed line) and two-phase (solid line) laws of the internal mass motion 

4.1.  Harmonic law of the internal mass motion 
For the harmonic law of the internal mass motion the difference between the forces on a direct and 

return phases of the movement, acting on the shell, causes the non zero average velocity of the whole 

system is achieved by asymmetrical flow around the shell with respect to the half-period. 

Evolution of the motion characteristics depending on the Reynolds number for different regimes is 

shown in fig. 2 and fig. 3. 

 

 

 

 

Figure 2. Average velocity of movement. 

Different curves represent different flow 

regimes: solid gray - H1, dashed gray –H2, 

doted – H2, solid black - TP1, dashed black - 

TP2.  

 Figure 3. Efficiency of movement. Different 

curves represent different flow regimes: solid 

gray - H1, dashed gray –H2, doted – H2, solid 

black - TP1, dashed black - TP2. 

In the area of small Reynolds numbers (Re < 170) a unique, periodic and symmetric with respect to 

the oscillations axis regime H1 is realized (see fig. 4). This regime corresponds to the vertex forward 

motion of the triangular robot. The growth of flow complexity and non-linear effects in this area lead 

to increase of the values of average velocity and efficiency coefficient. When Re becomes larger than 
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170, simultaneously with the basic regime H1 another periodic and symmetric with respect to the 

oscillations axis motion regime H2 appears, that implements oppositely directed base forward 

movement (the flow pattern is presented in fig. 4). Thus a hysteresis of motion regimes arises. 

Switching to one of these regimes depends on the initial parameters of the robot motion. The values of 

average velocity and efficiency of movement of the robot in regime H2 approximately the same as for 

regime S.  

In the neighbourhood of Re = 240 the basic regime H1 transforms to a quasiperiodic asymmetrical 

regime H3 (see fig. 4). The transformation is associated with the crisis of the basic parameters of 

motion that is particularly noticeable on the graphs of the efficiency coefficient and average velocity 

(see fig. 2, 3). 

 

 

Figure 4. Flow patterns around vibration-driven robot at different motion regimes for harmonic 

oscillations of the internal mass. H2 (left), H1 (central), H3 (right). 

4.2.  Two-phase law of the internal mass motion 

The structure of the considered two-phase law is shown in fig. 1. As can be seen the full period of the 

movement consists of two main phases: a long phase of slow motion and a short phase of fast motion, 

during which the internal mass moves with constant velocity. The transition between these phases is 

realized in a short time interval, the duration of which is less than 2% from the full period of 

movement. The main idea of this law is that during the slow long phase the shell of vibrating-driven 

robot should experience less resistance than on the fast return phase, when due to the nonlinear 

dependence of the resistance on the speed the forces opposing the movement of the robot increase 

significantly. To improve the efficiency of movement the long phase is combined with the vertex 

forward motion of the shell. 

The two-phase motion law of the internal mass provides the only one possible direction of motion 

of the system (in the considered case it is vertex forward motion). In the area of small Reynolds 

numbers (Re < 220) a unique, periodic and symmetric with respect to the oscillations axis regime TP1 

is realized (see fig. 5). In the neighbourhood of Re = 220 it transforms to a quasiperiodic asymmetrical 

regime TP2 (see fig. 5). 

Comparison of the simulation results for different laws of the internal mass motion (see fig. 2,3) 

shows that the two-phase law provides a higher speed of movement (up to 50%) in the fluid, and is 

significantly more efficient (up to 4 times) in terms of energy consumption. 
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Figure 5. Flow patterns around vibration-driven robot at different motion regimes for two-phase 

oscillation law of the internal mass. TP1 (left), TP2 (right). 
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