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Abstract. Propagation constants and amplitudes of eigenwaves of photonic crystal fibers are 

calculated numerically using an algorithm based on combination of the exact nonlocal 

boundary conditions method and the finite-element method. The design of fibers has a central 

large core filled with nematic liquid crystal. We investigate the influence of radii of the 

cladding air holes and their number as well as radius of the central liquid crystal on the spectral 

characteristics of fibers. Our results strongly suggest that radius of the crystal in contrast to the 

size and the number of capillaries has a significant influence on eigenwaves and propagation 

constants. Varying this radius we control the number of solutions of the problem for a fixed 

wavelength. 

1.  Introduction 

Spectral problems of the theory of photonic crystal fibers (PCF) attract a lot of attention (see, for 

example, [1], [2]). PCF having a central large core filled with nematic liquid crystal (NLC) is a 

modern component of micro-devices used in photonics and laser technology [3]. The development of 

efficient numerical methods for accurate and stable computations of spectral characteristics of NLC-

PCF is essential for designing and optimizing of such devices. Mesh methods, namely, various 

modifications of the finite-element method (FEM, see, for example, [3], [4]) and the finite-difference 

method (see, for example, [5], [6]) are used extensively to solve these important applied problems. 

Often the authors concentrate on the algorithm's features and physical interpretation of the numerical 

results rather than on fundamental mathematical aspects, including correctness of used models. 

The original problems for eigenwaves of open dielectric waveguides, particularly, NLC-PCF, are 

formulated on the whole plane. From the mathematical point of view, the main difficulty in applying 

the mesh methods to solve such problems is the transfer of radiation conditions from infinity to the 

boundary of the finite mesh domain. This obstacle was overcome in two different manners by the 

method of exact nonlocal boundary conditions in [7] and [8]. The original problems were reduced to 

problems on a bounded domain (on a circle) through the use of the nonlocal boundary operators 

defined by the Fourier series. This approach allows us to give a new correct formulation of the 

problem for eigenwaves of NLC-PCF as a generalized spectral problem with a nonlinear dependence 

on the spectral parameter, which is applicable for the numerical solution. A more convenient for the 

numerical solution formulation of the spectral problem for open dielectric waveguides was proposed 

in [9]. It is also a problem in a bounded domain and is formulated as a generalized eigenvalue problem 

for self-adjoint operators in a Hilbert space, but the spectral parameter enters into it linearly. The latter 

property significantly simplifies the numerical solution of this class of problems and allows us to 
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develop efficient numerical methods. An algorithm for the numerical solution of such problems based 

on the finite-element approximation was proposed in [9]. The convergence of this method was proved 

in [10]. 

In the presented paper, using mentioned above algorithm, we calculate numerically propagation 

constants and amplitudes of eigenwaves of NLC-PCF and investigate the influence of radii of the 

cladding air holes and their number as well as radius of the central liquid crystal on the spectral 

characteristics of the fibers. Our results strongly suggest that radius of the crystal in contrast to the size 

and the number of capillaries has a significant influence on eigenwaves and propagation constants. 

Varying this radius we control the number of solutions of the problem for a fixed wavelength. 

2.  Problem statement and the exact nonlocal boundary conditions method  

In this section, following [3], we state the problem for the TE-eigenwaves of NLC-PCF. We use 

Cartesian coordinates and assume that the generating line of the fiber is parallel to Ox3 axis. Figure 1 

shows a schematic diagram of the investigated NLC-PCF. All the cladding air holes have the same 

radius r and are arranged with a hole pitch L. The big central hole has a radius r0 and is infiltrated with 

NLC material. We assume that the refractive index n of this material is equal to n0 = 1:5024. The 

structure of all capillaries Ωi is surrounded by silica with the refractive index ns = 1:45. As usual, the 

refractive index of air is one and the magnetic permeability of all dielectric materials is equal to the 

magnetic constant μ0. Note that our consideration is true for a much more general case, namely, if the 

refractive index is a sufficiently smooth function of the transverse coordinates and Ωi is a bounded 

domain with a piecewise smooth boundary γ.  

 

 

Figure 1. The structure of the suggested 

NLC-PCF and the decomposition of the 

coordinate plane 
2R . 

  

 

The original problem is formulated as follows: find pairs of the numbers ( , )k   and nonzero 

real-valued vanished at infinity functions u satisfying the equation  

 −∆𝑢 + 𝛽2𝑢 = 𝑘2𝑛2𝑢,    𝑥 ∈ 𝑅2\𝛾, (1) 

and the boundary conditions  

 𝑢+ = 𝑢− ,   
𝜕𝑢+

𝜕𝜈
=

𝜕𝑢−

𝜕𝜈
,    𝑥 ∈ 𝛾. (2) 

Here 
1 2( , )x x x , ν is the unit outward normal vector for the curve γ, 

1/2

0 0( )k     is the 

longitudinal wavenumber, 
0  is the vacuum permittivity,   is the angular frequency,   is the 

propagation constant, u is the amplitude of the longitudinal component of the electric 

field, 0{( , ) : / / , 0}sk n k n        . If ( , )k  , then the transverse wavenumber  
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 2 2 2 1/2( )sp k n    (3) 

is real and positive. Equation (1) has the form  

 
2 0u p u     (4) 

on the domain 
2

iR   , and p defines the rate of decay of u at infinity, namely (see [11], for 

example),  

  exp( | |) 1/ | | | | .u p x O x as x      

We can solve the original problem as the parametric eigenvalue problem, where the parameter is 

either   or k, but let us introduce the new pair of the unknown parameters ( , )p  and the set 

 2 2 2

0 0{( , ) : 0, 0 ( ) / }.sK p p n n n          

It is easy to see that formula (3) defines the one-to-one correspondence between the sets Λ and K. Let 

us consider the new problem: find pairs of the numbers ( , )p K   and nonzero real-valued vanished 

at infinity functions u satisfying the following equation on 
2 :\R    

 
2 2 2 2( 1) , / ,su p u u n n          (5) 

and transparency conditions (2). Using (3), we see that equation (5) transforms to equation (1). The 

converse is also true. Therefore the two problems are equivalent in the following sense: ( , , )k u  is a 

solution of (1) if and only if ( , , )p u  is a solution of (5). Now we reduce problem (5) to a problem 

posed on a circle.  

We assume that the origin belongs to 
i . Let 

0 0{ :| | }RB x x R   be the circle of the minimal 

radius 
0R  such that 

0i RB  . We choose a number R that more or equal to R0 and put 
RB , 

   , and 
2R    (see Fig. 1). Each solution of problem (5) satisfies equation (4) 

on 
2

iR  , hence it is smooth on this domain. By pu  (u) we denote its restriction to the 

domain   ( ). Then the function up satisfies equation (4), and for x  the following equalities 

hold:  

 , .p pu u u u      

Here ν is the unit outward normal vector for the curve Γ, u  is the derivative of u in the direction of ν. 

The function pu  is the solution of the exterior boundary value problem  

 2 0, , , .p p pu p u x u u x        (6) 

Using separation of variables, we easily get  

 
2

0

( ) 1
( ) , ( ) .

( ) 2
|in inn

p n n r R

n n

K pr
u a u e a u u e d

K pR


  










     (7) 

Here ( , )r   are the polar coordinates of x in the system where the pole is the center of RB , ( )nK r  is 

the modified Bessel function of the second kind of order n. Thus, we see that ( , , )p u  satisfies the 

following equation on the circle with the nonlocal boundary condition:  

 
2 2 ( 1) , , ( ) 0, .u p u u x u S p u x             (8) 
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Here, 

 
( )1

( ) ( ) ( ) , ( ) .
( )

in n
p n n n

n n

K r
S p u u Rp a u e r r

R K r












     K K   (9) 

The operator ( )S p
 is the mentioned above nonlocal boundary operator. Problem (8) is the desired 

problem on the bounded domain. In [12] we investigated the generalized solvability of problem (8) 

and proved its equivalence to the original problem, in [9], [10] we proposed and theoretically 

investigated a numerical method for problem (8) based on FEM. We solve problem (8) as the 

parametric eigenvalue problem for 
2 , where p > 0 is the parameter. In the next section we describe 

the numerical results obtained using this method. 

 

 

 

 

Figure 2. Variation of the 

propagation constant β with the 

transverse wavenumber p for the fiber 

without cladding air holes.  

 Figure 3. Variation of the 

propagation constant β with the 

transverse wavenumber p for the fiber 

with 36 cladding air holes. 

 

 

 

 

Figure 4. The fundamental mode of 

the fiber without cladding air holes.  

 Figure 5. Variation of the effective index effn  

of the fundamental mode with the wavelength λ 

for a rank of number m of cladding air holes. 

3.  Numerical results and discussion   

Figure 2 shows the variation of the propagation constant β with the transverse wavenumber p for the 

fiber without cladding air holes and core radius 0 1.7r m . This structure satisfies the classical 

optical fiber. It is well known that the fundamental modes of such fibers have no cut-off values, i.e. the 

fundamental (propagating) mode can propagate for any positive wavelength λ (see [12], for example). 

The bottom curve starting at (0,0) is the dispersion curve of the fundamental mode, its diagram 
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for 7.7148 m   is presented in Fig. 4. The variation of the effective index /effn k  of the 

fundamental mode with λ¸ for this fiber is presented in Fig. 5 by the blue line.  

 

 

 

 

Figure 6. The fundamental mode of 

the fiber having 6 cladding air holes.  

 Figure 7. The fundamental mode of the fiber 

having 36 cladding air holes.  

 
If the core is surrounded by the cladding air holes, then the fundamental mode has a cut-off value. 

Figure 3 shows the variation of the propagation constant β with the transverse wavenumber p for the 

NLC-PCF having 36 cladding air holes with radius 0.4r L  and the hole pitch 2.9L m , 

where 
0 1.7r m . The bottom curve of the fundamental mode starts from the cut-off value. Variation 

of the effective index effn  of the fundamental mode with the wavelength 𝜆 is presented in Fig. 5 by the 

azure line. We see that it has the cut-off value. There are not any solutions of the problem with λ more 

than 2.378 m . The diagram of the fundamental mode for 2.3775 m  is presented in Fig. 7. 

 

 

 

 

Figure 8. The fundamental mode of 

the NLC-PCF with 36 small cladding 

air holes of radius r = 0.1L.  

 Figure 9. Variation of the effective index effn  

of the fundamental mode with the wavelength λ 

for a rank of radius of the cladding air holes r.  

 

We investigated the influence of radii of the cladding air holes and their number as well as radius 

of the central liquid crystal on the fundamental mode. It is interesting that the size and the number of 

capillaries have no significant influence on the mode diagrams and the propagation constants (see 

Figs. 5-9).  

We investigated the influence of radius of the central liquid crystal on the spectral characteristics of 

the fibers. Our results strongly suggest that radius of the crystal in contrast to the size and the number 

of capillaries has a significant influence on eigenwaves and propagation constants (see Figs. 10, 11). 
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Varying this radius we can control the number of solutions of the problem for a fixed wavelength (see 

Fig. 11).   

 

 

 

 

Figure 10. The fundamental mode of 

the fiber with 36 cladding air holes 

and a small central core with 

0 0.5 .r m   

 Figure 11. Variation of the effective index effn  

of the fundamental mode with the wavelength λ 

for a rank of radius of the central core r0.  

 

4.  Conclusions  

The exact nonlocal boundary conditions method together with the finite-element method gives the 

reliable tool for numerical modeling of PCF. The future development of these methods is urgent to 

calculate leaky modes of PCF.  
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