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Abstract. In order to use electron motion for mathematical modelling we assessed 

convergence rate in central limit theorem for homogeneous vector random fields, which fulfil 

condition of strong mixing. 

1.  Introduction 

Capacitive coupled radio-frequency (CCRF) discharges are widely used for treatment of organic 

materials because they have low gas temperature. When making numerical calculation of CCRF-

discharge characteristics in approximation of continuous medium, we need apply the values of the 

factors of the initial-boundary value problems, which are the part of the mathematical model of the 

discharge (factors of diffusion, mobility of charged factors, velocity of plasma chemical reaction) [1-

3]. We have very little experimental information, that is why the factors for electron gas are 

determined by solving Boltzmann equation, and Maxwellian distribution function is used for ion gas 

as a rule. However, these methods are not accurate under high values of the electrical field observed in 

electrode sheath of glow discharge and CCRF discharge; in order to account impact of the field, they 

apply statistical calculation methods for velocity distribution function of discharged particles [4-7]. 

Here we use statistical analysis of random fields. It is known that limit theorems are significantly 

important for statistical methods. Many authors use central limit theorem for random fields under 

some low dependency limits [7-10]. This research paper is dedicated to application of asymptotic 

decomposition of the characteristic functions and assessment of sum semi-invariants of random 

vectors in order to obtain values of convergence rate in limit theorem for weakly dependent vector 

random fields. 

2.  Statement of a theorem 

Let us assume that 1( ,..., )nt t  – homogenous, in restricted sense, vector random field, assumed on 

integer lattice nZ , in other words the random function reflecting nZ  in m-dimensional Euclidean 

space mR .  

We shall set 
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We shall introduce the function 
1 2( ., ) sup ( ) ( ) ( )E E P AB P A P B    for any invariant sets 1 2,E E  

from nZ , where the upper boundary is taken at all events ,A B belonging to minimal  -algebras, 

resulted by 1( ,..., )nt t , when the vector 1( ,..., )nt t  belongs to 
1 2,E E , correspondingly.  

Theorem. Let us assume that the following conditions are applied: 

1) Random vectors 1( ,..., )nt t  have zero vector of mathematical mean value; 

2) 
1( ,..., )nt t B  , B- positive constant; 

3) random field 1( ,..., )nt t corresponds to the condition of strong mixing with the factor

1 2 1 2( , ) ( , )E E Ad E E   ,where 1 2E E  , - significantly large fixed positive number, A - positive 

constant; 

4) covariance matrix of the sum 
1 1 2,..., / ...

nT T nS TT T  is not confluent and under 1,..., nT T   is 

approaching to the unit matrix. 

So, 
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   , under 1,..., nT T  , where the upper 

boundary is taken at all convex measurable sets mM R , 83 / (( 1) )n n   ,  - normal distribution 

with unit matrix of co-variations and zero mean vector 

3.  Theorem proof.  

The theorem is proved by using “step-by-step approximations” method developed by V.T. Dubrovin, 

D.A. Moskvin to study rates of convergence in boundary value theorems for the sum functions from 

slightly dependent values; development of this method was continued by F.G. Gabbasov for 

multidimensional boundary value theorems for slightly dependent vectors [11-15]. 

Let us provide the values used to prove the theorem. We shall introduce a random value, where 
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Lemma 1. The following estimate is fair  

1 1 2( ,..., ) ( ... )n nQ Q O QQ Q  . 

The lemma is proved with the same way as in [12]. 

Lemma 2. Under fixed  , 1 / n   , the estimate is fair 
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The lemma shall be proved as lemma 2 from [12]. 

Let us assume that QP -distribution of the sum
1

1

1
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... ( ,..., )
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  , and ( )Qf x -its characteristic 

function. 

Lemma 3. If under some 0 1/ 2,   and some , 1    asymptotic equality takes place  
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  , where ( )M is boundary of convex set M . 

The lemma shall be proved with the similar way as lemma 2 from the research paper [13] 
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Let us introduce the following symbols. Let us assume that N and 
iQ  are random, growing together 

with 1,..., nT T , natural numbers. Let us assume that 

 
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k k n i i i i iE t t Z k Q N t k Q N i n        , 


1

'

,... 1( ,..., ) : ( 1)( ) ( 1)( ) , 1,
n

n

k k n i i i i i iE t t Z k Q N t k Q N Q i n           

 
1

0

1,..., 1 1( ,..., ) : ( ) , 1,
n

n

p p n i i i iE t t Z p Q N t T i n        , 

1 1 1

0 '

,..., ,..., ,...,/
n n nk k k k k kE E E , 

where  1 , ( )i i i i ik p p T Q N    , [ ] – the sign of an integral part. Moreover, let us assume, that 

 ( ) , 1,i i i iT p Q N p i n    .     (2) 

Let us indicate 1 2... nQ QQ Q , 1 2... np p p p . 

Further, let us compose the sums 
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Now the sum 
1 ,... nT TS =

0

p pQ Q  . Here, due to the condition of strong mixing 3) theorems, 

random values in the sum 
p  are almost independent and we can apply the central limit theorem for 

the sums of independent random vectors including evaluation of convergence rate. The sum 0

p  does 

not affect general limit distribution and its contribution of distribution of the sum 
1 ,... nT TS passes to a 

residual member of the theorem.  

Let us demonstrate it. We shall indicate 
1 ,...,

ˆ
nk k random vectors, which are distributed by the same 

way as 1,...,1  and 
1

11
,...,1 1

ˆ ˆ...
n

nn
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  . 

Let us assume that  is the matrix of vector covariate 1,...,1 . Taking into account condition 4) of the 

theorem, we can show that the elements differ from the elements of unit matrix at the value  1О Q . 

Let us indicate A such matrix, that ' 1A A   , where 'A - is transposed matrix A. It is obviously that 

the vector ˆ /pA p  has unit matrix of covariate. 

Let us assume that pG - is distribution of /p p ; A

pG - is distribution of /pA p ; ˆ( ),   ( )p pf x f x

- are characteristic functions of /pA p , ˆ /pA p , respectively. 

By use of condition of strong mixing 3) of the theorem, we can get (see.[13], balance(6)) 
4 3ˆ( ) ( ) ( / )p pf x f x O p N   . 

More over, under 
1 1 ( 1)

1,...,1/ (8( ) ) px p E A T
 


    is right  (see [13], ratios (7) and (8)) 

asymptotic decomposition 
2 3 2/2 2 1

1

ˆ ( ) exp ( / 2)(1 ( )(1/ )) (3 exp( / 4) / )r

p r pr
f x x P ix p O x x T

  



 


     , 

where ( )rP ix  are dependent on semi-invariants of the value 1,1,...1( , )A ix  of the order not higher than 

r+2 (see [13] of ratios (7) and (8)). Lemma 1 implies that 
22 2( ) ( )

rr r

rP ix O r x Q


 . 

In further we use S.M. Sadikova’s inequation – linking difference between the characteristic functions 

with the difference between corresponding distributions. The methods of its use for this specific case 
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is described in [13], where we shall choose (  )vpT O Q T and consider that the conditions of lemma 3 

are fulfilled. 

Thus we get, 
44 1 /2sup ( ) ( ) (ln ( )( / 1/ 1/ exp( ) ln / ))A m m m m

p p
M

G M M O T pT N pQ T Q p cp T T  



        

In further, as well as in [13] we can show that evaluation of sup ( ) ( )p
M

G M M  differs from 

preliminary evaluation on (1/ )O Q . Than after evaluation of distribution ( ) ( / )p pG M P p M   

we start evaluating distribution 
1

1
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1 1

(( ) / ) (1/ ... ( ,..., ) )
n

n

T T

p p n

k k

P p M P pQ k k M  
 

      as well as 

in [13], by using lemma 2. Thus, we get order difference 1/(2 )(( 1) / ).nO N Q  The reason of such rough 

evaluation is in large amount of summands in 0

p  and in the applied method, which can be improved in 

future. Similarly, we start evaluating distribution
1

(1/ )
n

jj
P n M


  and get order difference 

22 / 2

1(( ... ) / ( ))n

nO T T Q p     . Than due to choice of 
41/3

1, ( ... ) ,nN T T     (1 2 )/( 1 2 )[ ]n n n

i ip T     , 

and iQ  from the condition (2) we get  
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n n
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Thus, the evaluation (see [13], lemma 5) follows: 
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n n
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      

This evaluation is obtained in presumption that condition (1) of lemma 3 is fulfilled. If we assume that 

 =0, so we get 

12 4

1

1 2

2( 1)

,..., 1 1( / ... ) ( ) (1 ((1 )( ... ) ))
n

n

T T n nP S T T M M O T T 


   

        

 (3) 

without using lemma 3. This result can be considered as the initial approximation for our method. Due 

to use of condition (1) of lemma 3 under (3) is fulfilled, we get more precise residual member in the 

theorem.  

As a result of step-by-step approximation, we get proof for our theorem as well as in [12]. We shall 

notice that condition 4) of unicity of covariance matrix does not limit the community as the distance 

between distribution of random vectors is invariant in relation to non-generate linear transformation of 

these vectors. 

4.  Conclusion 

Thus, as a result of use of step-by-step approximation method we managed to distribute evaluation of 

convergence rate within boundary value theorem for uniform random fields one dimensional case to 

multidimensional case. In further there is possibility to improve this evaluation in order to reach the 

level of the boundary value theorems for independent random fields. 
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