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Abstract. Solvability of one system of nonlinear second order partial differential equations 

with given initial conditions is considered in an arbitrary field. Reduction of the initial system 

of equations to one nonlinear operator equation is used to study the problem. The solvability is 

established with the use of the principle of contracting mappings. The method used in these 

studies is based on the integral representations for the displacements. These representations are 

constructed with the use of general solutions to the inhomogeneous Cauchy-Riemann equation. 

1. Introduction 

Let us introduce in the plane bounded domain Ω and consider a system of nonlinear differential 

equations in the form 
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under the following conditions at the boundary Γ: 
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In (1)–(4) the following notations are used:  
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The system (1) together with the boundary conditions (2)–(4) describes the state of equilibrium 

isotropic elastic homogeneous shell with simply supported edges within the framework of Timoshenko 

shear model [1, pp. 168-170, 269]. Here 𝑇𝜆𝜇
 are stresses (𝜆, 𝜇 = 1,3̅̅ ̅̅ ); 𝑤𝑗(𝑗 = 1,2) and 𝑤3 are 

tangential and normal displacements of the points of  𝑆0;   𝜓𝑖(𝑖 = 1,2) are rotation angles of normal 

cross-section of  𝑆0;      22 ,,2,1,3,1 PNkLjR kj  are components of the external forces acting on 

the shell; 𝜇 = 𝑐𝑜𝑛𝑠𝑡  is the Poisson coefficient,  𝐸 = 𝑐𝑜𝑛𝑠𝑡 is Young‘s modulus,  𝑘1, 𝑘2 = 𝑐𝑜𝑛𝑠𝑡  are 

principal curvatures; 𝑘2 = 𝑐𝑜𝑛𝑠𝑡  is the shear coefficient; ℎ = 𝑐𝑜𝑛𝑠𝑡 is the shell width; 𝛼1, 𝛼2 are the 

Cartesian coordinates of the points in the domain Ω. 

Problem (1)-(4). Find a solution to system (1) under boundary conditions (2)-(4). 

There are a number of works devoted to the solvability of nonlinear problems in the framework of 

the Timoshenko displacement model [2-7]. For this purpose the theory of problems Rimann-Hilbert 

for holomorphic functions in the unit circle is used. Therefore, the field assumed from the beginning 

the unit circle [2-6], or conformal mappings on the unit circle [7]. At the present time, on the unit 

circle existence theorems of solutions of nonlinear problems for Timoshenko-type shell with rigidly 

clamped edges [2],  with free edges [3]  and with simply supported edges [4-6] are obtained. In [7] the 

system (1) is studied for shells of Timoshenko type with free edges in an arbitrary field Ω. The method 

of works [3], [4], [7] is developing on the case of arbitrary elastic shell with simply supported edges in 

this paper. 

Consider boundary-value problem (1)-(4) in a generalized formulation. Let the following 

conditions hold true: (a) Ω is a simply connected domain with the boundary 1

С ; (б) external 

forces       p

ki LkLiR 2,1,3,1 ,  ;, 22 ГCPN   in what follows .10,2  p  

Definition. The vector of generalized displacements      ,2,,,,, 2

21321  pWwwwa p  is a 

generalized solution to the problem (1)-(4) if the vector satisfies almost everywhere the equations of 

system (1) and it satisfies boundary conditions (2)–(4) in pointwise fashion. 

Here   2

pW  is a Sobolev space. Let us note that due to embedding theorems for Sobolev spaces 

  2

pW  with ,2p  the generalized solution   belongs to ).(1 С  
In what follos pp /)2(  . 

2. Solution to problem (1)-(4) with respect to tangential displacements and angles of rotation  

Let us consider the first two equations in (1) and initially assume that 
3w  

is fixed. In terms of the 

complex function  2121 12121 
 wwiww 

 
these equations can be represented in the form 
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Equation (6) is an inhomogeneous Cauchy–Riemann equation. It has general solution [8]: 
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where  z1  is an arbitrary holomorphic function that belongs to the space  .С  
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It is well-known [8,pp.41,53], that Tf  is a completely continuous operator which acts in 

  ,2,  pLp
   .kC  It maps these spaces into  С  and  ,1 kC

 respectively. Besides, there 

exist the generalized derivatives [8,pp.33-34,53-67] 
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where the integral exists in the principal value sense of Cauchy (almost everywhere when 

  )1,  pLf p
and Sf  is a linear bounded operator in  ,pL   .kC

 

With the function   120 iwwz   relation (7) can be also rewritten in the form of an 

inhomogeneous Cauchy–Riemann equation 
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The general solution of this equation is 

       )10(120 zTfiTdzz   

where  z2  is an arbitrary holomorphic function of the class  .1 C  

Thus, for fixed 
3w the general solution of the two first equations (1) is of the form (10) and contains 

two arbitrary holomorphic functions   .2,1,  jzj
We define these functions so that tangential 

displacements 
21 ,ww  will satisfy boundary conditions (2), (3). First, we find  z2  from the 

condition 01 w on Γ. We have a Rimann-Hilbert problem for the holomorphic function  z2  with 

the boundary condition  

    )11(.),(Re]Re[ 2 ГttTdti    

Let )(z  is conformal mapping of the unit disk 1: K to the area  .  It is known that if 

condition ( a ) a function )(  belongs to the space  KC1


, [8, p.25]. Under the conditions (11) will 

hold a replacement )(tt  ,   )()( 22 tt   , leaving for new variables to the previous notation. 

As a result, we have a Rimann-Hilbert problem for the holomorphic function  z2  of the unit disk 

K  with the boundary condition  

    )12(.1:)),((Re]Re[ 2  tKttTdti   
Then the solution of the Riemann-Hilbert problem (12) has the form [9, p.253] 
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where 0c  is a arbitrary real constant. 

We differentiate relation (13) with respect to z , we find 
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We substitute relations for the tangential displacements 
21 ,ww
 
from (10) into (3). Hence, boundary 

conditions (3) take the form 
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Via the  tSd  ][ 1  means the limit of the function  zSd ][ 1  as  tz  from the interior of the 

domain Ω.  t  the boundary value of holomorphic functions in Ω 

      )17(2132 zziz    

Thus, for the  z  we have a Rimann-Hilbert problem with the boundary condition (15) in an 

arbitrary field Ω. Using conformal mapping, we have a Rimann-Hilbert problem for the holomorphic 

function   )(zz   in the unit disk  K  with the boundary condition 

  )18(,1:,)())((])(Re[  tKttthttt   

where  dddtt ,/  is part of an arc of a circle K . 

The index of problem (18) equals -1. Therefore, the solution of this problem is [9, p.253] 

  )19(,,
)())((

)(

1











K

Kz
t

dt

zt

tth

z
z



  
and the solvability condition 
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of problem should be fulfilled. Which can be converted to the form 
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We find  z1  from the relation (17). For this purpose  z  and  z2  replace it with 

expressions from (19) and (14). Taking into consideration ))(( th   in (16) and equality 
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where   )()()(),(0 ttt    to t  and )(),(0 ttt    to ,t )]([ 1 td  , jd  are 

defined in (9), using the Cauchy formula for  z1  and (4.7), (8.8а) from [8, p.28, 55], we have 
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)( 3wl  is defined in (16). 

Let  z   reverse function to )(z . It is known that   1)(  Cz  [8, p.25]. Therefore, 

 )(1 z    1

pW , )1/(22  p . 

We substitute expression (23) into (13) to obtain 
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Consider tangential displacements 
1w
 
and 

2w
 
that satisfy the first two equations (1) and conditions 

(2), (3). Upon substituting (23), (25) into (10) and assuming that condition (21) is true, we obtain 

  )26(,,)( 0300  zczwHz  

              .))(()()()(;)( 3313233030 zwTfwliTdzwlzwlwfHzwH    

We now turn to functions 
21 ,  in the last two equations (1). These functions should satisfy 

boundary conditions (2), (4). 

Let us note that the structure of left-hand sides in the last two equations (1) coincides with the 

structure of left-hand sides in boundary conditions (2) and (4). Relations for tangential displacements 

differ only in the right-hand sides. Therefore at fixed right-hand sides for rotation angles we obtain 

  )27(,];~[;~
12012 cglgHi  
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where )2,1( jg j  are defined in (5),  gfH ;0  is defined in (26), ];~[ 2gl  is defined in (16);  

1c an arbitrary real constant. 

As this takes place, the condition of solvability, similar to (20), can be reduced to the form 
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where 

2N ,
2L are components of external load. 

Since      ,0;~;];~[;~
02020  HgHglgH   then (27) can be written in the form 

    )29(.0;~,; 001200  HKcgHK   

It is obvious that 0K  are linear completely continuous operators in   2

pW , ).1/(22  p  

Let us show that the homogeneous equation 00   K  has only the trivial solution in   2

pW , 

).1/(22  p  Suppose the contrary:  12  i   2

pW , ),1/(22  p  is a nonzero 

solution satisfying condition (28) with 
2N = 02 L . Obviously, the function 12  i  satisfies 

the last two equations in system (1) with ,021  gg  the homogeneous boundary conditions 

,01   and conditions (4) with 0)(2 t . We multiply the last two relations in (1) by 1  and 2 , 

respectively, integrate the resulting relations over the domain Ω, and add them. In view of the 

boundary conditions, we obtain the relation 
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ddk  

which implies that 021   in . . Then there exists an inverse operator   1
 KI , which is 

bounded in   2

pW , ),1/(22  p  and whose application to Eq. (29) gives the relation 

     )30(.; 120

1
cgHKI 


  

Note that the function   1

1

* cKI


 satisfies the last two equations in system (1) with 

021  gg  and the homogeneous boundary conditions, of the above.  Therefore, 0*   in  . 

Then from Eq. (30), we derive the unique representation via the deflection for the rotation angles, 

    )31(.);()( 230

1

3  wgHKIw


  

Condition (28) for the rotation angles (31) is identically satisfied. To justify this fact, it suffices to 

substitute the expression (31) into the last equation in system (1) and integrate the resulting relation 

over Ω with regard to the boundary condition (4). 
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3. Reduction of system (1) to a single equation for the deflection and its study  

The functions  
2121 ,,, ww

 
included in the third equation of the system (1), we replace them with 

expressions from (26), (31). As a result, we obtain a nonlinear second-order partial differential 

equation for the deflection, 

,0313133 2211  wGwKww
  

which is equivalent to the equation 

)32(,0333  GwKww  
where 

        )33(;,,, 313313  
 

  ddwGzHGwddwKzHKw  

 zH ,  is the harmonic Green function of the Dirichlet problem for the domain Ω, 31wK   is a 

linear compact operator and 31wG  is a nonlinear bounded operator from   2

pW  into  ,pL

).1/(22  p  

Then from (33) we find that 3Kw  is a linear compact operator and 3Gw is a nonlinear bounded 

operator in   2

pW , );1/(22  p  further , the estimate 

   
  

  
)34(,1

22

2

3

1

30

2

3

1

3


 
pp WW

wwrrqсwGwG
 

 
   

,0
2

1

2

1,

0



 

pLC

RTq







 

               0,0,0,0,00,00 2121  wwaaTT 
 

holds for arbitrary    2

3 )2,1( p

j Wjw  that belong to the ball   rw
pW
23 . 

Let us show that the equation 

)35(033  Kww  
has only the trivial solution in   2

pW , ).1/(22  p  Let    2

3 pWw , )1/(22  p ,  is a 

nonzero solution of Eq. (35). By relations (26), (31), to this solution, there correspond tangential 

displacements )( 3wwj
 and rotation angles 2,1),( 3 jwj . They satisfying the system (1) with 

021321  LLRRR , in which the nonlinear terms do not exist, and the homogeneous 

boundary conditions (2), (3) with 0)(1 t  and (4) with 0)(2 t . The each of identities in (1) we 

multiply by 
21321 ,,,, www , respectively,  integrate over the domain Ω, and sum the resulting 

relations.  Then, by integrating by parts in the resulting relations, together with boundary conditions, 

imply that 03 w in  . Consequently, Eq. (35) has only the zero solution in   2

pW , 

).1/(22  p  Then there exists an inverse operator 1)(  KI  bounded in   2

pW , 

)1/(22  p , which permits one to reduce Eq. (32) to the equivalent equation 

  )36(,,0 3

1

333 GwKIwGwGw


   
where 

3*wG  is a nonlinear bounded operator in   2

pW , );1/(22  p  moreover, the estimate 

       
,

22

2

3

1

3

2

3

1

3





 
pp WW

wwqwGwG  
   

  rrqKIcq
pW






 10

1

2

 
holds for arbitrary 

   2

3 )2,1( p

j Wjw  that lie in the ball   rw
pW
23 . 

Suppose that the radius r  of the ball and the external forces acting on the shell satisfy the 

conditions 
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     
  )37(.10,1 2 rqGq

pW    

Under these conditions, for Eq. (36), one can use the contraction mapping principle [10, p. 146]. 

The fair following the main 

Theorem. Let conditions (а), (б) in Section 1 be fulfilled and inequality (37) holds. Then condition 

(21) is necessary and sufficient for the solvability of the geometrically nonlinear equilibrium problem 

for shallow elastic isotropic homogeneous shells of the Timoshenko type under the boundary 

conditions (2)–(4). Then the problem has generalized solution     ,,,,, 2

21321  pWwwwa 
 

).1/(22  p  Components 
2131 ,,, ww
 
are uniquely defined and component 

2w
 
depends on 

constant. 
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