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Abstract. Solvability of one system of nonlinear second order partial differential equations
with given initial conditions is considered in an arbitrary field. Reduction of the initial system
of equations to one nonlinear operator equation is used to study the problem. The solvability is
established with the use of the principle of contracting mappings. The method used in these
studies is based on the integral representations for the displacements. These representations are
constructed with the use of general solutions to the inhomogeneous Cauchy-Riemann equation.

1. Introduction
Let us introduce in the plane bounded domain ) and consider a system of nonlinear differential

equations in the form
W0+ W, o o + oW, = T,
W, 1p W, 00 T H 112:f2,
3a'a
P2, 124k, 12+ (T Hw ) + R3] 0
Vit THWY ope THW 2 = 91 + kol//]_v

Y ynn YW, e T Y, 0 =00 + koW
under the following conditions at the boundary I':

k2M(W11+W22—H//11—H//22+kW +kW —kw, + (1)

W, =w; =y, =0, (2
‘ul(thZ +W, \t)da?/ds — (;zvvm1 +W, , Jt)da/ds = o, (w, t), ©)
.+, N0de? fds—(uv,, +v,,. JO)da'/ds = 0, (1), @
In (1)—(4) the following notations are used:
ijfj(W) k]+2W W, i Wy i THW, s W. W, Wy s s :Bsz!
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g; = gj(WB): KoW,,, B =12, = (1_:U)/2’:U2 = (1+,U)/2’
o (ws ) = P (s)+ [, (02 + w2, (©)/2]de? ds - g w, , (W, . (Vda’ fds, ()
(02(t)= BN 2(5)'t =t(s) = &' (s) +ia'(s) e .k =k, + 1k, k, =k, + 1k,

ks = k2 +K2 + 24k K, ky = 6k2(1— )/ h?, B, =12(1— ?)I(h°E), B, = (1— 12 )/(EN).
The system (1) together with the boundary conditions (2)—(4) describes the state of equilibrium
isotropic elastic homogeneous shell with simply supported edges within the framework of Timoshenko
shear model [1, pp. 168-170, 269]. Here T** are stresses (A, =ﬁ);wj(j =1,2) and w; are
tangential and normal displacements of the points of Sy; ¥;(i = 1,2) are rotation angles of normal

cross-section of Sy; R J (j = ZIT3), L¥ (k = 1,2), N 2, P2are components of the external forces acting on

the shell; 4 = const is the Poisson coefficient, E = const is Young‘s modulus, k4, k, = const are
principal curvatures; k? = const is the shear coefficient; h = const is the shell width; a®, a? are the
Cartesian coordinates of the points in the domain Q.

Problem (1)-(4). Find a solution to system (1) under boundary conditions (2)-(4).

There are a number of works devoted to the solvability of nonlinear problems in the framework of
the Timoshenko displacement model [2-7]. For this purpose the theory of problems Rimann-Hilbert
for holomorphic functions in the unit circle is used. Therefore, the field assumed from the beginning
the unit circle [2-6], or conformal mappings on the unit circle [7]. At the present time, on the unit
circle existence theorems of solutions of nonlinear problems for Timoshenko-type shell with rigidly
clamped edges [2], with free edges [3] and with simply supported edges [4-6] are obtained. In [7] the
system (1) is studied for shells of Timoshenko type with free edges in an arbitrary field Q. The method
of works [3], [4], [7] is developing on the case of arbitrary elastic shell with simply supported edges in
this paper.

Consider boundary-value problem (1)-(4) in a generalized formulation. Let the following
conditions hold true: (a) Q is a simply connected domain with the boundaryI" € C%; (6) external

forces Ri(i :]TB), L“(k=1,2)e Lp(Q), N? P?e Cﬁ(F); in what follows p > 2,0 < B <1.
Definition. The vector of generalized displacements a = (Wl, W,, Wy, 17, 1//2) eWéz)(Q), p>2 isa

generalized solution to the problem (1)-(4) if the vector satisfies almost everywhere the equations of
system (1) and it satisfies boundary conditions (2)—(4) in pointwise fashion.
Here Wéz)(Q) is a Sobolev space. Let us note that due to embedding theorems for Sobolev spaces

Wéz)(ﬂ) with p > 2, the generalized solution o belongs to C ; (Q). In what follos & =(p—-2)/p.

2. Solution to problem (1)-(4) with respect to tangential displacements and angles of rotation
Let us consider the first two equations in (1) and initially assume that w, is fixed. In terms of the

complex function @ = W +W, .+ iy (WZM1 -W . ) these equations can be represented in the form
where f =(f, + fz)/2,a); =(cz)a1 +iw , )/2,2 =a' +ia’.
Equation (6) is an inhomogeneous Cauchy—Riemann equation. It has general solution [8]:

o(2)=®,(2)+TH(z),  Tf =—%ﬂ£d§dn,g=g+in, @

where (1)1(2) is an arbitrary holomorphic function that belongs to the space C, (ﬁ)
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It is well-known [8,pp.41,53], that 7f is a completely continuous operator which acts in
L,(Q)p>2 C (ﬁ) It maps these spaces into C, (ﬁ) and CK* (ﬁ) respectively. Besides, there

exist the generalized derivatives [8,pp.33-34,53-67]
orf 8Tf
CALIN A L Q) 4 , 8
oz oz ﬂ z)2 A ®

where the integral exists in the principal value sense of Cauchy (almost everywhere when
fe Lp(Q), p>21)and Sf is a linear bounded operator in Lp(Q), Ck (ﬁ)

With the function o, (Z)z W, + IW, relation (7) can be also rewritten in the form of an
inhomogeneous Cauchy—Riemann equation

o, =i(do+d,0)=id[w]d = (4 + (1) )/(424), j =12 )
The general solution of this equation is
wy(2)=@,(z)+iTd[®, +Tf)2) (10)

where @, (z) is an arbitrary holomorphic function of the class C} (ﬁ)

Thus, for fixed w, the general solution of the two first equations (1) is of the form (10) and contains
two arbitrary holomorphic functions (I)J.(z), j =1,2.We define these functions so that tangential
displacements w,,w, will satisfy boundary conditions (2), (3). First, we find CI)Z(z) from the

condition w, =0on I'. We have a Rimann-Hilbert problem for the holomorphic function ®,(z) with
the boundary condition

Re[i®, (t)] = ReTd[w](t),t € I". 11)
Let z = () is conformal mapping of the unit disk K : |§ | <1to the area Q. It is known that if
condition (@) a function ¢(¢) belongs to the space C/ ( ) [8, p.25]. Under the conditions (11) will

hold a replacement t — ¢(t), @, (¢@(t))— D, (t), leaving for new variables to the previous notation.
As a result, we have a Rimann-Hilbert problem for the holomorphic function @, (z) of the unit disk
K with the boundary condition

Re[i®, (t)] = ReTd[w|(p(t)),t € 0K : |t =1. (12)
Then the solution of the Riemann Hilbert problem (12) has the form [9, p.253]
D,(z)= —2— jRer [, +Tf ]((p(t))H—ZdT+c0, zekK, (13)

where C, is a arbitrary real constant.
We differentiate relation (13) with respect to z , we find

@;(z):—?jRercD +Tf Jo(t))—— t

(-2
We substitute relations for the tangential displacements w;, w, from (10) into (3). Hence, boundary
conditions (3) take the form

(14)

Re{t'®(t}} = h(t),t' =dt/ds,t e I, (15)

where

h(t) = 1(w;)(t)+ Reft'Sd[®, " (t)}— Re{u, T, (t)}/ 2, 11 = L+ 1) (21— 1)), (16)
I(w,)(t) = wi’*)l(t) +Reft'SA[TF]" (t)— 1, der*/dsReTF ()} = I[ F (W, ); @, (W, )].
P
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Via the SA[®@,]" (t) means the limit of the function Sd [CI)l](Z) as Z >t eI from the interior of the
domain Q. CD(t) the boundary value of holomorphic functions in Q

D(z) =10} (z)+ 1, ©,(2)/2 A7)

Thus, for the CD(Z) we have a Rimann-Hilbert problem with the boundary condition (15) in an

arbitrary field Q. Using conformal mapping, we have a Rimann-Hilbert problem for the holomorphic
function CD(Z )(0'(2) in the unit disk K with the boundary condition

Re[t'o'()D(t)] = ') tedK:|t|=1, (18)
where t" =dt/do,do is part of an arc of a circle oK .
The index of problem (18) equals -1. Therefore, the solution of this problem is [9, p.253]

_ 1 he®e'®d
@(z)= w'(Z)i . 2eK, (19)
and the solvability condition
ey g @

oK
of problem should be fulfilled. Which can be converted to the form
[P?(s)ds+ [[R°de'da’ = 0. (21)

r Q
We find @l(z) from the relation (17). For this purpose <D(Z) and (D'Z(Z) replace it with
expressions from (19) and (14). Taking into consideration h(¢(t)) in (16) and equality

UL, (p() = 5 2 E ; d[, ()] +

d . o(zt) o (T)T d, p (T) 72
+ =1 @, (r)dr +— —0 (T)dZ' (22)
24 Jn e et O 2 ey e
where @, (7,t) =[o(7) —go(t)]/('r—t) to 7#t and @o(t,t) =@'(t) to 7=t, d[D,(t)].d, are
defined in (9), using the Cauchy formula for CI)l(z) and (4.7), (8.8a) from [8, p.28, 55], we have
q)1(2) =@, [I (Ws)](z)’ zeK, (23)

where

O, (w,))2) = 204~ DS ReTA[TT Ko (2) + 42 | (W) ()’ 1)
4 oK

) dt, (24)

S 1(0)= - %m,

I(w;) is defined in (16).
Let ¢ =w(z) reverse function to z = ¢(¢). It is known that y/(z) e C} ( ) [8, p.25]. Therefore,
D, (p(2) ew?(). 2< p<2/1- ).

We substitute expression (23) into (13) to obtain
D, (y(2) = @, [I(W,)[w(2))+ ¢, 2€Q, (25)

@, [I(w3)Jw (2)) = —% I(Rer Lwy) ) +ReTd[Tf ](t)) t+ ‘/’EZ; dtt
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Consider tangential displacements w, and w, that satisfy the first two equations (1) and conditions
(2), (3). Upon substituting (23), (25) into (10) and assuming that condition (21) is true, we obtain
w,(2)=H,w,(2) +¢,,2 €, (26)
How (2) = Ho[ £ (ws )1 (w3 )[2) = @, [1(ws )l (2)) + Tl [, 1 (ws ) () + TF (wis () N2)
We now turn to functions y,,y, in the last two equations (1). These functions should satisfy

boundary conditions (2), (4).

Let us note that the structure of left-hand sides in the last two equations (1) coincides with the
structure of left-hand sides in boundary conditions (2) and (4). Relations for tangential displacements
differ only in the right-hand sides. Therefore at fixed right-hand sides for rotation angles we obtain

V/:l//2+iV/1:Ho[g+V7;|[g+l/7;¢2]]+C1’ (27)
gEg(Ws):(gl"'igz)/z");:ko(W1+iV/2)/2’
where g, (j=12) are defined in (5), Ho[f;g] is defined in (26), I[g +¥;¢,] is defined in (16);

C,an arbitrary real constant.
As this takes place, the condition of solvability, similar to (20), can be reduced to the form

B N?(s)ds + [[ Lda’da®) —k, [[ w,da’da” =0, (28)

where N2, Lare components of external load.
Since H, [g +yillg+v; e, ]] =H, [g 1 P> ]+ H, [&;0], then (27) can be written in the form
‘//_Kol//:Ho[g;(Pz]+CliKo‘//:Ho[&;o]- (29)
It is obvious that Ky are linear completely continuous operators in W?(Q), 2< p<2/(1- p).
Let us show that the homogeneous equation {7 — K,y =0 has only the trivial solution in w®(Q),
2< p<2/(1- p). Suppose the contrary: ¥ =y, +iy, € w?(Q), 2<p<2/(1-pB), is a nonzero
solution satisfying condition (28) with N?=L* = 0. Obviously, the function y = W, +iy, satisfies
the last two equations in system (1) with g, =0, =0, the homogeneous boundary conditions

w, =0, and conditions (4) with ¢, (t) =0. We multiply the last two relations in (1) by ¥, and v, ,

respectively, integrate the resulting relations over the domain €, and add them. In view of the
boundary conditions, we obtain the relation

([t +17,,)° + 1 s +17,,2) + U= 1) P +y%22) + Ko (] + 3} da®
Q

0,

which implies that w, =y, =0 in Q.. Then there exists an inverse operator (I - K)fl, which is
bounded in Wsz)(Q), 2< p<2/(1- ), and whose application to Eq. (29) gives the relation

-1 .
‘//:(I _K) (Ho[g’(”z]"'cl)- (30)
Note that the function . =(| —K)ﬁlclsatisﬁes the last two equations in system (1) with

g, =9, =0 and the homogeneous boundary conditions, of the above. Therefore, . =0 in Q.
Then from Eq. (30), we derive the unique representation via the deflection for the rotation angles,
-1 .
v =p(w,) =(1 -K) Ho[g(w); 0, } (3)

Condition (28) for the rotation angles (31) is identically satisfied. To justify this fact, it suffices to
substitute the expression (31) into the last equation in system (1) and integrate the resulting relation
over Q with regard to the boundary condition (4).
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3. Reduction of system (1) to a single equation for the deflection and its study
The functions w,,w,,y,,y, included in the third equation of the system (1), we replace them with

expressions from (26), (31). As a result, we obtain a nonlinear second-order partial differential
equation for the deflection,

W3ozluzl +W3a2a2 +K1W3 + GlWS = 0’

which is equivalent to the equation
w; + Kw, +Gw, =0, (32)
where

Kw, = [[ H(g, 2)K,w, ()d&dn, Gw, = [[ H g, 2)G,w (s )déd n; (33)

H (g, Z) is the harmonic Green function of the Dirichlet problem for the domain Q, K,W,; is a
linear compact operator and G,W; is a nonlinear bounded operator from Wéz)(g) into Lp(Q),
2<p<2/1-p).

Then from (33) we find that KW, is a linear compact operator and GWjis a nonlinear bounded

operator in W{?(Q), 2< p <2/(1—- f3); further , the estimate
|G.w;, —G,w3| <y + @+ r)r]w; - W,fHW

W) =

2 2
6@=2[T*0) +XRY
Au=1 cl@) 4=

Lp(©)

T#(0)=T*(a(0)), a(0)=(w:(0)w,(0)0,41,(0).y>(0))
holds for arbitrary w)(j=12) ew!?(Q) that belong to the ball ||W3||W(2) <r.

(34)

P’

Let us show that the equation
w; + Kw, =0 (35)
has only the trivial solution in Wéz)(Q), 2<p<2/(1-p). Let w, ewéz)(g), 2<p<2/1l-p), isa

nonzero solution of Eq. (35). By relations (26), (31), to this solution, there correspond tangential
displacements w,(w,) and rotation angles y (w,), j=12. They satisfying the system (1) with

R,=R,=R; =L, =L, =0, in which the nonlinear terms do not exist, and the homogeneous
boundary conditions (2), (3) with ¢, (t) =0 and (4) with ¢, (t) =0. The each of identities in (1) we
multiply by w,,w,,W,,y;,y,, respectively, integrate over the domain Q, and sum the resulting
relations. Then, by integrating by parts in the resulting relations, together with boundary conditions,

imply that w; =0in €. Consequently, Eq. (35) has only the zero solution in w{®(q),
2<p<2/(1-p). Then there exists an inverse operator (I+K)* bounded in w@®(Q),
2< p<2/(1- p), which permits one to reduce Eq. (32) to the equivalent equation

w, +G,w, =0, G,w, =(1 +K)"Gw,, (36)
where G,w; is a nonlinear bounded operator in W®(Q2), 2< p <2/(1— f); moreover, the estimate

e P PRLE. (BOY

wi(j =12) eW,(©2) that lie in the ball [ws,¢) <.

iy S O wgz'(g)[q‘) +(+r)y] holds for arbitrary

Suppose that the radius r of the ball and the external forces acting on the shell satisfy the
conditions
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q. <1, ||G*(o)||wéz)(g) <@-q,)r. (37)

Under these conditions, for Eq. (36), one can use the contraction mapping principle [10, p. 146].

The fair following the main

Theorem. Let conditions (a), (0) in Section 1 be fulfilled and inequality (37) holds. Then condition
(21) is necessary and sufficient for the solvability of the geometrically nonlinear equilibrium problem
for shallow elastic isotropic homogeneous shells of the Timoshenko type under the boundary

conditions (2)—(4). Then the problem has generalized solution a = (Wl,Wz,W3,1//l,1//2)eWF§2)(Q),

2<p<2/(1- p). Components W,,W,,y,,, are uniquely defined and component w, depends on

constant.
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