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Abstract. This paper presents a model of deformation of hyperelastic reinforced 

composite. The constitutive equations are derived using the free strain energy. The 

numerical algorithm to solve such problems is compiled. A computational algorithm is 

based on a finite element method. 

1. Introduction  

In different industries to increase structural strength often use composite materials. Besides, in 

biomechanics tissues can be described as composite materials with specific properties [13, 14]. Also 

modelling of mechanical behavior of composite materials is important in contact mechanics [7]. There 

are many different methods of calculating the structure of these materials [6, 27–30]. It is a promising 

improvement and development of new techniques. In this paper, an algorithm for calculating a 

composite material structure is considered with hyperelastic properties. Many papers are devoted to 

research of hyperelastic isotropic continuum [1–5, 8–12, 25, 26]. They lay down on the basis of this 

paper. In the first part is considered the free strain energy function for hyperelastic reinforced 

composite. The basic physical relations are constructed. A computational algorithm is described. The 

second part is devoted to finite element discretization. 

2. Constitutive relations  

Hyperelastic reinforced composite material is characterized by a free energy function strain in the 

form [20–22]: 
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There , , , ,l t      – the mechanical characteristics of the material determined from the 

experimental [23, 24]. Where invariants are defined as follows: 
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They depended on the measure of the left Cauchy–Green deformation tensor and the structural 

tensor of A , which describes the position of the fibers in the material. At the initial time: 
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 0 0 0 ,a a A   

0a  – the preferential fiber orientation vector in the reference configuration. After deformation, the 

fibers change their direction, and the tensor structure will 

 ,a a A   

where a  – the preferential fiber orientation vector in the deformation configuration. 

To create a physical relationship is used equation of the form [21, 22, 27]: 
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This implies that the second Piola–Kirchhoff stress tensor is defined as follows: 
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To use the incremental method of calculation is necessary to define the stress increments, which are 

calculated as a material derivative of the stress tensor by time. In the general case we can write [1, 3]: 
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After transformations the following expression: 
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where 
1

( )
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ijkl ik jl il jk       – components of the 4th order tensor Λ , 
ijklA im jmkl jm miklA A      – 

components 4th order tensor AΛ , which components depend on the fiber direction. 

The equation of principle of virtual power in the initial configuration is written as 
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where   – velocity vector of a material point; 0S  – part of the surface on which are defined forces; 

*

0nt  – vector of surface forces, 0f  – vector of body forces. 

A total Lagrangian formulation is used to solve this problem [27, 28]: 
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3. Finite element discretization  

An 8 node isoparametric finite element is used for computer implementation. We introduce 

approximation geometry and velocities: 
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where      1 1 2 2 3 31
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t t t tN             – interpolation function, 1 2 31 , , 1,       k i

ty  – 

coordinates of nodes, 1i

t    the coordinates of the respective nodes in the local coordinate system, 
k i

t  – velocity of nodes. 

Define the following components of the tensors 
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For the equation (1) we can write: 
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since the second Piola–Kirchhoff tensor is a symmetric tensor. 
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After integration (1) we obtain a system of linear algebraic equations:  
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Solving equation (2), give the increment of the displacements ku , 1k i k i k iy y u    and stresses 
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4. Conclusion 

The paper is constructed procedure of investigation of hyperelastic composites. The constitutive 

relationships are obtained for composite materials. The computational algorithm is created. A total 

Lagrangian formulation is used. The basic equations are obtained for computational algorithm. The 

numerical implementation is based on the finite element method.  
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