
 

 

 

 

 

 

Existence of solutions for electron balance problem in the 

stationary radio-frequency induction discharges 

V S Zheltukhin
1
, S I Solovyev

2
, P S Solovyev

2
 and V Yu Chebakova

2 

1
Kazan State Technological University, 68 Karl Marx Street, Kazan, 420015, Russia 

2
Kazan Federal University, 18 Kremlevskaya Street, Kazan, 420008, Russia 

 

E-mail: sergei.solovyev@kpfu.ru 

Abstract. A sufficient condition for the existence of a minimal eigenvalue corresponding to a 

positive eigenfunction of an eigenvalue problem with nonlinear dependence on the parameter 

for a second order ordinary differential equation is established. The initial problem is 

approximated by the finite element method. Error estimates for the approximate minimal 

eigenvalue and corresponding positive eigenfunction are derived. Problems of this form arise 

in modelling the plasma of a radio-frequency discharge at reduced pressure. 

1.  Statement of the problem 

In the present paper we investigate the problem of finding the minimal eigenvalue ,  

[0, ),    corresponding to a positive eigenfunction ( ),u x  ,x  (0, ),   [0, ],   of the 

following eigenvalue problem 

 
( ( ( )) ) ( ( )) ,    ,

(0) ( ) 0.

p s x u r s x u x

u u

 



   

 
  (1) 

Assume that ( ),p   ( ),r   ,  and ( ),s x  ,x  are continuous positive functions, ( ),p   

( ),r   ,  are continuous functions, ( ),p   ,  is nondecreasing bounded, ( ),r   ,  is 

nondecreasing unbounded. 

For fixed ,  by ( )   we denote the minimal simple eigenvalue corresponding to a positive 

eigenfunction ( ) ( ),u x u x  ,x  of the parametric linear eigenvalue problem 

 
( ( ( )) ) ( ) ( ( )) ,    ,

(0) ( ) 0.

p s x u r s x u x

u u

   



   

 
  (2) 

Then the minimal eigenvalue   of problem (1) is the minimal root of the following equation 

 ( ) 1,    .      (3) 

In Section 2, assuming the condition 1 2( ) ( )p s r s   for some ,   where 1s  and 2s  are the 

minimum and maximum of the function ( ),s x  ,x  we prove the existence of a minimal simple 
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eigenvalue of problem (1) being a minimal root of equation (3). In Section 3, we define a mesh 

scheme of the finite element method for solving problem (1). We prove the existence of a minimal 

simple approximate eigenvalue corresponding to a positive eigenfunction under the condition 

1 2( ) ( )p s r s   for some    and establish error estimates for the approximate minimal 

eigenvalue and corresponding positive eigenfunction. These results develop the results of the paper 

[1]. 

Problems of the form (1) arise in modelling the plasma of a radio-frequency discharge at reduced 

pressure. The sufficient condition obtained in the paper defines a condition necessary for maintaining 

a stationary inductive coupled radio-frequency discharge at reduced pressure [1–5]. 

Eigenvalue problems with nonlinear dependence on the parameter arise in various fields of science 

and technology [6–18]. Numerical algorithms for solving matrix nonlinear eigenvalue problems were 

constructed and investigated in [10,19–23]. Mesh methods for solving differential eigenvalue 

problems with nonlinear dependence on the spectral parameter were studied in [24–28]. The 

theoretical basis for the study of eigenvalue problems with nonlinear dependence on the parameter is 

results obtained for linear eigenvalue problems [29–35]. 

2.  Existence of solutions 

Let 2( )H L   denotes the real Lebesgue space with norm 0| . | .  By 

{ :  ,  ,  (0) ( ) 0}V v v v H v v      we denote the real Sobolev space with norm 1| . | .  Here we use 

the notation from [1]. For fixed ,  we introduce the bilinear forms 

 

0 0

( , , ) ( ( )) d ,   ( , , ) ( ( )) d ,a u v p s x u v x b u v r s x uv x

 

         

for ,u v V  and the Rayleigh functional ( , ) ( , , ) ( , , )R v a v v b v v    for any \{0}.v V  Put 

{ :  ,  ( ) 0,  }.K v v V v x x      

The differential eigenvalue problem (1) is equivalent to the variational nonlinear eigenvalue 

problem: find minimal   and ,u K  ( , , ) 1,b u u   such that 

 ( , , ) ( , , )   .a u v b u v v V      (4) 

For fixed ,  the differential eigenvalue problem (2) is equivalent to the variational linear 

eigenvalue problem: find minimal ( )   and ,u u K   ( , , ) 1,b u u   such that 

 ( , , ) ( ) ( , , )   .a u v b u v v V        (5) 

Theorem 1. Suppose that 1 2( ) ( )p s r s   for some ,   where 1s  and 2s  are the minimum 

and maximum of the function ( ),s x  .x  Then there exists a minimal simple eigenvalue of problem 

(4) corresponding to a positive eigenfunction. 

Proof. According to the variational characterization for the minimal simple eigenvalue of problem 

(5), we derive 

 

2 2
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By [1], ( ),   ,  is the continuous function, and ( ) 0    as .   This implies the 

existence of a minimal root of equation (3), which defines the minimal eigenvalue   of problem (4) 

corresponding to a positive eigenfunction. Thus, the theorem is proved.  

3.  Approximation of solutions 

Define the partition of the interval [0, ]  by equidistant points ,ix ih  0,1,..., ,i N  into the 

elements 1( , ),i i ie x x  1,2,..., ,i N  .h N  By hV  denote the subspace of the space V  

consisting of continuous functions 
hv  linear on each element ,ie  1,2,..., .i N  Set 

{ :  ,  ( ) 0,  }.h h h

h hK v v V v x x     

The variational nonlinear eigenvalue problem (4) is approximated by the following finite-

dimensional nonlinear eigenvalue problem: find minimal 
h   and ,h

hu K  ( , , ) 1,h h hb u u   

such that 

 ( , , ) ( , , )   .h h h h h h h

ha u v b u v v V      (6) 

For fixed ,  the variational linear eigenvalue problem (5) is approximated by the following 

finite-dimensional linear eigenvalue problem: find minimal ( )h   and ,h h

hu u K   

( , , ) 1,h hb u u   such that 

 ( , , ) ( ) ( , , )   .h h h h h h

ha u v b u v v V        (7) 

Then the minimal eigenvalue 
h  of problem (6) is the minimal root of the following equation 

 ( ) 1,    .h      (8) 

Theorem 2. Suppose that 1 2( ) ( )p s r s   for some ,   where 1s  and 2s  are the minimum 

and maximum of the function ( ),s x  .x  Then there exists a minimal simple eigenvalue of problem 

(6) corresponding to a positive eigenfunction. 

Proof. Using variational characterization for the minimal simple eigenvalue of problem (7), we get 

 

2 2

0 01 1

\{0}\{0} \{0}
2 22 2

0 0

( ( ))(( ) ) d ( ) d
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( ) ( )

( ( ))( ) d d
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h h
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v Vv V v V
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 


 

 

    
 

 

  

According to [1], ( ),h   ,  is the continuous function, and ( ) 0h    as .   This 

implies the existence of a minimal root of equation (8), which defines the minimal eigenvalue 
h  of 

problem (6) corresponding to a positive eigenfunction. Thus, the theorem is proved.  

By c  we denote various positive constants independent of .h  For fixed ,  we introduce an 

operator ( ) :  h hP V V   by the rule ( , ( ) , ) 0h

ha u P u v    for any ,h

hv V  where ,u V  

2

0| ( ) | .hu P u ch   Put ( ),h hP P   
2

( )|| || ( , , ),bv b v v   ,v V  .   

By ( ),h

i   ( ) ( , ),h h

i iu u x   ,x  ,  1,2,..., ,i N  we denote eigenvalues and 

eigenfunctions satisfying (7) and such that  

 1 2( ) ( ) ... ( ),h h h

N          
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 ( , ( ), ( )) ( ) ,    ( , ( ), ( )) ,    , 1,2,..., ,h h h h h

i j i ij i j ija u u b u u i j N              

1 ( ) ,h h

hu u K    
1 ( ) ( ),h h     the functions ( ),h

iu   ,  1,2,..., ,i N  form a complete 

system in the space .hV  For fixed   and sufficiently small ,h  the estimates hold: 

 
2 2

00 ( ) ( ) ,    1,2,    | | .h h

i i ch i u u ch            

Theorem 3. Let   be the minimal simple eigenvalue of problem (4) corresponding to the positive 

eigenfunction ,u  and let 
h  be the minimal simple eigenvalue of problem (6) corresponding to the 

positive eigenfunction .hu  Assume that ( ) 0.    Then the following error estimates hold 

20 ,h ch     
2

0| | ,hu u ch   for sufficiently small .h   

Proof. First estimate follows from relations  

 
2

1 2( ) ( ( )) ( ) ( ) ( ) ( ) ( )h h h h h h h hc c h                        

for some 
h  and sufficiently small .h  

Let us prove second estimate. Set ( , , ),h h h

i h ib Pu y   1,2,..., ,i N  where ( ),h h h

i iy u   

1,2,..., .i N  Since elements ,h

iy  1,2,..., ,i N  form an orthonormal basis in the space ,hV  it 

follows that the element h hPu V  can be represented in the form 1 1 1 ,h h h

hPu y w   where 

1 2 2 ... .h h h h h

N Nw y y     The inequality 2 1( ) ( ) 0      implies that 
2 ( ) 1h h c     for 

sufficiently small .h  Denote 

 
\{0} 1

| ( , , ) ( , , ) |
( ) sup .

| |h
h

h h h h

h h
h h

v V

a P u v b P u v
u

v

  





   

Then 
2( ) .h u ch    

To show the estimate 
2

1 1| |hw ch  for sufficiently small ,h  we note that  

 1 1 1( , , ) ( , , ),h h h h h

ha Pu w a w w    

 1 1 1( , , ) ( , , ),h h h h h

hb Pu w b w w    

 1 1 2 1 1( , , ) ( ) ( , , ).h h h h h h h ha w w b w w      

Hence we get the relations 

 1 1 1 1 1 1 1 1| | ( ) ( , , ) ( , , ) ( , , ) ( , , )h h h h h h h h h h h

h h hw u a Pu w b Pu w a w w b w w           

 
1 22

1 1 1 1

2

( ) 1
( , , ) | | ,

( )

h h
h h h h

h h
a w w c w

 


 


    

which imply the desired estimate: 
2

1 1| | ( ) .h

hw c u ch   Therefore 
2

1 1 0| | .h h

hPu y ch    

Moreover, we have 

 
2

1 1 1 ( ) ( ) 1 1( ) ( ) ( )
|| || || || || || || || || || 1 ,h h h

h h h h h

b bb b b
y u u u u y ch   
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1 1 1 ( ) ( ) 1 1( ) ( ) ( )
|| || || || || || || || || || 1 ,h h h

h h h h h

b bb b b
y u u u u y ch   

            

since  

 

2 2

( ) ( ) 2

( ) ( )
( ) ( )

|| || || ||
|| || || || ( ) ,

|| || || ||

h

h

h

b b h

b b
b b

u u
u u c ch

u u

 

 
 

 


    


  

 
2

1 1 2 1 1 0 2 0 1 1 0( )
|| || | | (| | | | ) ,h

h h h h h h

h hb
u y u y u Pu Pu y ch


              

for 2 1( 1)r s    and sufficiently small .h  Consequently, we derive 
2

1|1 | .h ch   

As a result, we conclude 

 1 0 1 1 1 1 1 1( ) ( ) ( )
| | || || || || || ||h h h

h h h h h h h

b b b
u u u y u y y y

  
            

 
2

1 1 1( )
|| || |1 | ,h

h h h

b
u y ch


        

where 1 (0).r   This completes the proof of the theorem.  
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