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Abstract. The paper deals with the problem of determining the stress-strain state of the distal 

part of the pelvic girdle bones. The area was modeled using a rod loaded by a compressive 

force and was described by physical relations linking the stress-strain tensor through the elastic 

constants, the fabric tensor, and the solid volume fraction of the material. Taking into account 

the law of porosity variation, we considered the problem of evaluating the stress-strain state 

depending on the nature of the porous structure, and the relationship of the structure with 

mechanical macroparameters. In this work, we present the results of calculations for a single 

load, construct the diagrams for the components of the strain tensor, and carry out an 

assessment of deformations for various system parameters. To evaluate the macroparameters, 

we built the dependence of the Poisson ratio of the material on the rotation angle α and the pore 

ellipticity parameter . The sensitivity of the deformations to the elastic constants was also 

estimated.  

1.  Introduction 

When solving the problems of determining the stress-strain state (SSS) of porous structures, it is 

necessary to take into account structural peculiarities of the material [1–5]. Today, when solving 

various problems of bone biomechanics [6–8], structures are commonly described by means of the 

fabric tensor. In this case, it is assumed that the fabric tensor is a quadratic form that describes the 

shape of a pore. Some physical relations have currently been built which connect the stress-strain 

tensor through the elastic constants, the fabric tensor, and the solid volume fraction in the material [9]. 

Analysis of the SSS of the distal part of the pelvic girdle bones is one of the urgent problems in bone 

biomechanics. In this work, the distal area is modeled using a rod loaded by a compressive force and 

described by the relations mentioned above. It is important to evaluate SSS taking into account the 

nature of the porous structure and the relationship of this structure with easily measurable mechanical 

macroparameters. 

2.  Materials and Methods 

Let us consider a block diagram loaded by the compressive force P (see figure 1). Assume that it is 

uniformly filled with pores having the porosity ν0. The pores have an elliptical shape with the fixed 

semi-radii and form an angle π/2-α with the line of action of the applied force. Let us formulate the 

SSS problem for this rod. Obviously, the constant tension is retained in each section: 
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where A is the cross-section area. 

For description of the porous structure, we will use the formalism associated with the fabric tensor. 

Then we will supplement the system by introducing physical relations in the form [9-12]: 
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where e is the variation of the solid bone volume fraction, K is the fabric tensor deviator, gi are the 

elastic constants. 

The fabric tensor is by definition normalized in such a way that  

 

1TrH  , 

 

its deviator is defined by the formula 
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As a result in this case we obtain  

 

0TrK  . 

 

The law of porosity variation was used in the following form: 
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where Ksp is the bulk modulus of elasticity of the skeleton with pores, Ks is the bulk modulus of 

elasticity of the skeleton, ν and ν0 are the actual and initial porosities respectively, and σi is the 

compressive stress. 

The following parameters were introduced during the research: 
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where n characterizes the volume liquid loss of the material, and  is the pore ellipticity.  

In this case the fabric tensor can be written in the following form: 
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Rotation of the tensor H is implemented by means of multiplication by a rotation matrix, wherein 

the rotation angle α is a system parameter. 
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Figure 1. Computational scheme. 

 

The aim of the study is to evaluate deformations for various system parameters. We used the 

following constant values in the numerical simulation [Cowin, Kichenko]: g1 = 154.9 GPa, g2 = 1147 

GPa, g3 = 612.9 GPa, g4 = 4536 GPa, g5 = 2384 GPa, g6 = 510.8 GPa. We also evaluated the solution 

sensitivity to the deviation from these parameters in case of their variation within 20%. 

3.  Results and Discussion 

We carried out calculations for a single load and constructed diagrams for the strain tensor 

components (see figure 2) on the -α axes. In extreme cases when =1 (round pores), the solution 

coincides with the known one and does not depend on the rotation angle; there are no shear 

deformations. After analyzing longitudinal deformations, we can note that they reach the largest 

values when the pore with the bigger radius is directed along the load action line (see figure 2a). The 

distribution of the transverse deformations is symmetrical relative to the line α = π / 4, and their 

absolute value increases when approaching α = π / 4 (see figure 2b). As far as shear deformations are 

concerned, they reach the maximum in the case of α = π / 6 and →0 (see figure 2c). 
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Figure 2. Diagrams for the components of the strain tensor. 

 

For evaluating the macroparameters, we built a dependence of the Poisson ratio of the material on the 

-α axes (see figure 2d). It was noted that in the case of circular pores, the obtained dependence does 

not depend on the parameters n, ν0, Ks (but obviously depends on the elastic constants gi) and tend to 

0.2. The largest value of the Poisson ratio is achieved when α → π/2 and →0 is within 0.3–0.35, 

depending on the initial porosity and elastic constants. Evaluation of sensitivity to the elastic constants 

showed their underestimation to the value of up to 20% results in the deformation increase by up to 

30%. With an increase of the elastic constants by 20%, the deformations decrease by 20%. 

4.  Conclusion 

This study examines the problem of finding the stress-strain state of the distal area in the pelvic girdle 

bones. The area was modeled by a rod loaded with a compressive force and was described by the 

physical relations linking the stress-strain tensor through the elastic constants, the fabric tensor, and 
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the solid volume fraction of the material. For the stated law of porosity variation, we considered the 

problem of evaluating the stress-strain state, depending on the nature of the porous structure and the 

relationship of the structure with the mechanical macroparameters. The calculation results are given 

for a single load. We constructed the diagrams for the strain tensor components and made an 

assessment of deformations for various system parameters. To evaluate the macroparameters, we built 

the dependence of the Poisson ratio of the material on the rotation angle α and the pore ellipticity 

parameter . The sensitivity of the deformations to the elastic constants was found to be 20–30%. 
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