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Abstract. The article is devoted to elasto-plastic analysis for finite deformations, large 

displacements and rotations. An incremental method is used. The stressed state is represented 

by Cauchy stress and objective Jaumann rate of Cauchy stress. The von Mises yield criterion 

and radial return method are applied. 

1.  Introduction 

There are many publications, where solutions of nonlinear problems of a solid mechanic are discussed, 

for example [1–17]. In this paper the algorithm of numerical solution of the problem of large elastic-

plastic deformations is considered [1–8, 13–15]. Kinematics of a medium is described by the 

deformation rate tensor, the stress state is determined by the Cauchy stress tensor. The theory of flow 

is used for describing plastic deformation. The total deformation rate is represented as a sum of elastic 

and plastic parts. The solution algorithm is based on an Update Lagrange formulation. The principle of 

virtual work in terms of the virtual velocity is used. The numerical implementation is based on the 

method of finite elements (FEM) is used. 

2.  Kinematics 

We assume that at the current time process of deformation represents the continua with elastoplastic 

properties. This corresponds to the Euler approach, widely used in continuum mechanics. In line with 

this, the kinematics of deformation of the body will be determined using the following tensors [22–

26]: velocity gradient tensor ij i jhh e e , deformation rate tensor
1

2

T

ij i jd    d h h e e , rate of 

rotation tensor
1

2

T

ij i j    ω h h e e . 

3.  Stress–strain relationship 

The state of a stress in a body is defined by Cauchy stress tensor ij i jΣ e e . Also we use objective 

Jaumann rate of Cauchy stress 
J

Σ  [22–24] 

 ,J     Σ Σ ω Σ Σ ω  (1) 

 

where Σ  is the rate of Cauchy stress. 
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Consider isotropic material and denote 1
0 3 iid d , 1

0 3
,J J

ii   0ij ij ijd d d   , 
0

J J J

ij ij ij      , 

where ij  is Kronecker delta. 

We adopt an additive split of the deformation of rate into elastic deformation of rate and plastic 

deformation of rate [23, 24]. Stress-strain relationship for elastic deformation is written as 

 0 02 , 3 ,J JG K  Σ d Σ d  (2) 

where 
 

,
2 1

E
G





 

 
,

3 1 2

E
K





E – Young’s modulus,   – Poisson’s ratio. In this case the 

elastic stress-strain relationships will satisfy to indifference principle. 

4.  Algorithm of computation 

Process of deformation is represented as a sequence of equilibrium states [23–27]. Conversion from 

previous state to next one proceeds by increment load. On each step of a loading the geometry and 

stress state are updated. Techniques of computation is consist in a development of algorithm of 

calculation of the state (l+1) when the state l is known. Consider the equation of the virtual powers in 

an actual configuration [31–33] 

 :

S

δ d δ d δ dS
 

     Σ d Q v P v , (3) 

where   is the current volume, S  is the surface on which the force P  is applied, Q  is the body 

force vector. The basic equation is obtained from the equation (3) using follow relations 

 : : : : ,
d J

δ d δ δ δ d
dt J

 

 
     

 
 Σ d Σ d Σ d Σ d  

 ,
d J

δ d d
dt J


 

 
      

 
 Q v Q Q v  

 ,

S S

d J
δ dS δ dS

dt J 

 
    

 
 P v P P v  

where 
1

2

T Tδ        d h h h h , 03
J

d div
J
  v , where v  – the velocity of a particle. 

The von Mises yield criterion and radial return method are applied to find the current state [23, 25, 

27]. Since the derived stress-strained state does not satisfy basic equation (3), then we carry out 

iteration procedure for increasing the accuracy current state. This procedure is based on the 

introduction of the “additional stresses” on virtual deformation of the rate. In this case the final 

equation will be 

 

 

 0 02 : 9 : :

:

[ : ]

l

l l

l l

l l

l m l l m l l l l m l m l l m

l m l m l m
l l l l l l

l m l m l m

S

l l l l

S

l l l l l l

S

G δ K δ δ δ δ

J J J
δ d d dS

J J J

d dS

d dS t







 

 

  









          


       



     

  
       
  



 

 

 

d d d d Σ d ω ω d d

Σ d Q v P v

Q v P v

Σ d Q v P v
1 ,

l

l m l d





   Σ d

(4) 

where m is the number of iteration, l is the number of step. 

For quasi-static problems will take 
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1l m l l m

l m

t t

  
 

 

R R u
v . 

 

And let Δt=1. In the result we get from (4), the equations for the increments of displacements 
l m u . After solving the general system of equations (4), we define tensors l m

d , l m
ω , using the 

relations (1, 2) find the rate of Cauchy stress l m
Σ  and trial stress tensor 

 1

0 0 0 ,l l l t   Σ Σ Σ  

 m l l m t    Σ Σ Σ , 

check the yield condition 

 
T

3

2

m m m

i ij ij      , 

and if T

m

i   the radial return method with an iterative refinement of the current mode of 

deformation is applied: 

 1 Tm m

m

i





 Σ Σ , 
1 1m m m 


  Σ Σ Σ . (5) 

Using relations (5) the general equation (4) is solved. If 
1 tolm

 Σ  then the next configuration 
1l i l i l iy y u    and stress state 1l m Σ Σ  are defined. 

5.  Numerical example 

The numerical computational is based on eight node isoparametric hexahedron element [21]. 

The problem of bending of a rectangular cross-section beam is considered. The beam is rigidly 

fixed on the one side, and on the other loaded with a bending moment. The length of the beam l=50 

cm, height h=1 cm, width b=0.125 cm, E=1000 kg/cm
2
, Poisson's ratio is=0. The value of the moment 

at which the beam is bent into a ring, was taken from the analytical solution of the М=2∙∙kg cm 

(figure 1). 

 

 

Figure 1. Different stages of the bending of a beam. 

 

The problem of elastoplastic deformation rigidly clamped at both ends of the beam under the action of 

distributed load q=27 kg/cm
2
. The length of the beam l=25 cm, height h=1 cm, width b=0.125 cm, 

E=20000 kg/ cm
2
, =0, 

2

T 750 kg / cm   (figure 2, 3). 

 

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012090 doi:10.1088/1757-899X/158/1/012090

3



 

 

 

 

 

 

 

 

 

Figure 2. Equivalent stress on deformed 

structures. 

 Figure 3. Equivalent plastic strain on 

deformed structures. 

6.  Conclusion 

А method of numerical investigation of elastic-plastic solids with finite deformations is considered. 

For plasticity the von Mises criterion is applied. Incremental loading procedure is used, where 

allowing the variation equation is derived from the principle of virtual work in the current 

configuration. For the simulation of plastic deformation the radial return method with iterative 

refinement of the current stress-strain state is applied. The numerical discretization is based on the 

finite element method. 
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