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Abstract. We consider problems of optimal resource allocation in telecommunication 

networks. We first give an optimization formulation for the case where the network manager 

aims to distribute some homogeneous resource (bandwidth) among users of one region with 

quadratic charge and fee functions and present simple and efficient solution methods. Next, we 

consider a more general problem for a provider of a wireless communication network divided 

into zones (clusters) with common capacity constraints. We obtain a convex quadratic 

optimization problem involving capacity and balance constraints. By using the dual Lagrangian 

method with respect to the capacity constraint, we suggest to reduce the initial problem to a 

single-dimensional optimization problem, but calculation of the cost function value leads to 

independent solution of zonal problems, which coincide with the above single region problem. 

Some results of computational experiments confirm the applicability of the new methods. 

1.  Introduction 

Despite the existence of powerful processing and transmission devices, increasing demand of different 

telecommunication services and its variability lead to serious congestion effects and inefficient 

utilization of network resources. This situation forces one to replace the fixed allocation rules with 

more flexible mechanisms, which are based on proper mathematical models; see e.g. [1]–[3]. In 

particular, spectrum sharing is now one of the most critical issues in this field and various adaptive 

mechanisms have been suggested. Most papers are devoted to game-theoretic models and 

implementation of decentralized iterative methods for finding the Nash equilibrium points or their 

generalizations; see e.g. [4, 5]. At the same time, various optimization based mechanisms are also 

suggested; see e.g. [6, 7, 5, 3]. 

In this paper, we consider some problems of optimal allocation of a homogeneous resource in 

telecommunication networks such that the income received from users payments is maximized and the 

implementation costs of the network operator are minimized. We first present an optimization 

formulation for the case where the network manager aims to distribute some homogeneous resource 

(bandwidth) among users of one region with quadratic charge and fee functions. These convex 

quadratic optimization problems can be solved by simple and efficient solution methods. We describe 

some modifications for this special problem. Next, we consider a more general resource allocation 

problem for a provider of a wireless communication network divided into zones (clusters); which was 

formulated as a convex optimization problem in [8, 9]. Now, since the price functions are affine, we 
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obtain again a convex quadratic optimization problem having capacity and zonal balance constraints. 

Unlike [8, 9], we now suggest to apply the dual Lagrangian method with respect to only capacity 

constraint. Therefore, we replace the initial problem with a single-dimensional optimization problem, 

however, calculation of its cost function value requires independent solution of zonal problems. Each 

of these problems coincides with the above single region resource allocation problem and can be 

solved by the simple algorithms suggested. In such a way we develop a new dual decomposition 

approach for solution finding, whose implementation is simpler essentially in comparison with the 

methods from [8, 9]. We present results of computational experiments which confirm the applicability 

of the new method. 

2.  Simple resource allocation model 

Let us consider a single telecommunication network with nodes (users). The general problem of a 

network manager is to find an optimal allocation of a limited homogeneous resource among the users 

in order to maximize the total payment received from the users and to minimize the total network 

implementation expenses. That is, x  is an unknown quantity of the resource offered by the network, 

with the capacity bounds ][0,bx , which yields the network expense (cost of implementation) )(xu . 

Similarly, 
i

y  is the unknown resource offered to user Ii  and )( ii y  is the fee (incentive) value paid 

by node i  with the capacity bounds ][0, ii ay  , where I  is the index set of users. The network 

manager problem is formulated as follows: 
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Suppose that the set D  is non-empty, functions )(xu  and )( ii y  are convex and quadratic, i.e., 

 0.>,0.5=)(;0,<,0.5=)( 22  xxxuIiyyy
iiiiiii

  

Then (1) is a convex quadratic optimization problem, which can also be treated as a two-side auction 

models with one trader where all the participants have affine price functions; see [10, 11]. For these 

problems there exist many rather efficient solution methods; see e.g. [12] and references therein. They 

are mostly based on duality theory. 

Following this approach, write the Lagrange function of problem (1) with the negative sign:  
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In order to find a value of the dual cost function  
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)(= , we have to solve one- dimensional problems: 
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for Ii . Solutions of these problems denoted by )(px  and )( py
i

, Ii , respectively, are defined 

uniquely. Set  )/(=)(~ ppx  and 
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It follows that the function )(p  is concave and differentiable with  

 ).()(=)( pxpyp
i
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Besides, the one- dimensional dual problem  

 )(max p
p

  

coincides with the simple equation  

 0,=)(p  (3) 

where )(p  is non-increasing. If 
*p  is the solution of (3), then we can find the solution of the initial 

problem (1) from (2) by setting 
*= pp . 

If we set 
i

Ii

p max=


  and =p , then the case pp   gives immediately the zero solutions in 

accordance with (2). So we can consider only the non-trivial case where pp  < . Then by (2) we 

must have 0>)(p  and 0<)(p  . These properties enable us to find a solution of (3) by the 

simple bisection algorithm, denoted as Algorithm (BS). Given an accuracy 0>  and the initial 

segment ],[ pp  , we take )0.5(=~ ppp  , calculate )~(p . Then we set pp ~=  if 0>)~(p  and 

pp ~=  otherwise, until <)( pp  . 

We can also utilize various heuristic algorithms. For instance, we describe a simple Algorithm 

(SQ). Define }>|{= pIiI ia
  , set 0=*

i
y  for 

a
Ii  and re-arrange the indices in 

a
I  to have the 

descending order for the values of 
i

 . Then find two sequential indices 
l
i  and 

1li  in 
a

I  such that 
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i

l
i
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3.  Multi-zonal network problem 

Let us consider a more general model where a telecommunication network is divided into several 

zones (clusters). The problem of a manager of the network is to find the optimal allocation of a limited 

homogeneous network resource among the zones in order to maximize the total profit containing the 

total income received from consumers’ fees and negative resource implementation costs; see [8, 9]. 

Let us use the following notation: 
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 n  is the number of zones;  

 
k

I  is the index set of users (currently) located in zone k  ( nk ,1,=  ); 

 B  is the total resource supply (the total bandwidth) for the system (network); 

 
k

x  is an unknown quantity of the resource allotted to zone k  with the upper bound 
k

b  and 

)(
kk

xf  is the cost of implementation of this quantity of the resource for zone k  ( nk ,1,=  ); 

 
i

y  is the resource amount received by user i  with the upper bound 
ia  and )( ii y  is the 

charge value paid by user i  for the resource value 
i

y . 

 

The network manager problem is the optimization problem involving capacity and balance 

constraints: 
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That is, (6) provides the balance for demand and supply in each zone, (7) involves capacity constraints 

for users and network supply values in each zone, and (5) gives the upper bound for the total resource 

supply. 

In what follows we assume that there exists at least one feasible point satisfying conditions (5)–(7), 

all the functions )(
kk

xf  and )( ii y  are convex and quadratic, i.e.  
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This means that (4)–(8) is a convex quadratic optimization problem. However, due to large 

dimensionality and inexact data one can meet serious drawbacks in solving this problem with usual 

finite or penalty solution methods. In order to create an efficient method, we have to take into account 

its separability and apply certain decomposition approach. However, the standard duality approach 

using the Lagrangian function with respect to all the functional constraints leads to the multi-

dimensional dual optimization problem. We will apply another approach, which was suggested in [13]. 

Let us define the Lagrange function of problem (4)–(7) as follows: 
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We utilize the Lagrangian multiplier   only for the total resource bound. We can now replace 

problem (4)–(7) with its dual: 
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where  
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By duality (see e.g. [14, 15]), problems (4)–(7) and (9) have the same optimal value. But solution of 

(9) can be found by one of well-known single-dimensional optimization algorithms; see e.g. [15]. In 

order to calculate the value of )(  we have to solve the inner problem:  
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Obviously, this problem decomposes into n  independent zonal optimization problems 
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for nk ,1,=  . Each k -th independent zonal problem (10) clearly coincides with problem (1) where 
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Therefore, we can find its solution by the algorithms of Section 2. 

4.  Numerical experiments 

The methods were implemented in C++ with a PC with the following facilities: Intel(R) Core(TM) i7-

4500, CPU 1.80 GHz, RAM 6 Gb. 

The initial intervals for choosing the dual variable   were taken as [0,1000]. Values of 
k

b  were 

chosen by trigonometric functions in [1,11], values of 
ia  were chosen by trigonometric functions in 

[1,2]. Value B  were taken equal 1000. The number of zones was varied from 5 to 105, the number of 

users was varied from 210 to 1010. Users were distributed in zones either uniformly or according to 

the normal distribution. 

The coefficients of the functions )(
kk

xf  and )( ii y  from (8) were taken as 

 3,|1)(=|1),|2)(22(|=  kcosksin kk   

and  
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For all the methods of finding solution of problem (4)–(7) the accuracy of upper dual problem 

solution were varied from 10
-1

 to 10
-4

. The accuracy of lower level problem solution in Algorithm 

(BS), was fixed and equal to 10
-2

. For each set of the parameters made 1000 tests. Let J denote the 

total number of users, Tε the total processor time in seconds. The results of computations are given in 

Tables 1–3. 

 

Table 1. Results of testing with 510=J , 70=n . 

ελ Tε: Algorithm (SQ) Tε: Algorithm (BS) 

10
-1 

0.0183 0.0018 

10
-2 

0.0217 0.0017 

10
-3 

0.0247 0.0020 

10
-4 

0.0289 0.0022 

 

Table 2. Results of testing with 70=n , 210=  . 

J Tε: Algorithm (SQ) Tε: Algorithm (BS) 

210 0.0043 0.0009 

310 0.0088 0.0009 

410 0.0142 0.0012 

510 0.0217 0.0017 

610 0.0303 0.0022 

710 0.0397 0.0026 

810 0.0515 0.0032 

910 0.0639 0.0039 

1010 0.0791 0.0048 

 

Table 3. Results of testing with 510=J , 210=  . 

n Tε: Algorithm (SQ) Tε: Algorithm (BS) 

5 0.0221 0.0004 

15 0.0217 0.0005 

25 0.0218 0.0006 

35 0.0217 0.0006 

45 0.0214 0.0017 

55 0.0220 0.0010 

65 0.0215 0.0011 

75 0.0223 0.0010 

85 0.0216 0.0012 

95 0.0220 0.0012 

105 0.0219 0.0015 

 

As we can see from the results in the tables, in all the cases the suggested methods were rather 

effective in finding a solution. Moreover, for the same accuracy, both the methods gave the same 

numbers of upper iterations, so that the main difference was in the processor time which showed that 

utilization of Algorithm (BS) for inner optimization problems give better performance. 

5.  Conclusions 

We considered several problems of optimal resource allocation in telecommunication networks. We 

presented simple and efficient solution methods for the case where the network manager aims to 
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distribute some homogeneous resource (bandwidth) among users of one region with quadratic charge 

and fee functions. Next, we considered a more general problem for a provider of a wireless 

communication network divided into zones. By using the dual Lagrangian method with respect to the 

capacity constraint, we suggest to reduce the initial problem to a single-dimensional optimization 

problem, where calculation of the cost function value leads to independent solution of zonal problems, 

which coincide with the above single region problem. Some results of computational experiments 

confirm the applicability of the new methods. 
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