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Abstract. An approach to the calculation of flow of an incompressible viscous fluid in the 

Stokes approximation is developed based on the finite difference method with the use of 

conformal mapping. The problems of flow around a circular cylinder and ellipse in a periodic 

circular cell have been solved. The method is particularly well suited for solving problems of 

flow around bodies of an arbitrary curved shape. 

1.  The problem statement  

A flow around a body of an arbitrary shape in a circular periodic cell at low Reynolds numbers is 

considered (fig. 1, a). In the Stokes flow approximation, the dimensionless problem of a fluid flow in 

the domain ABCD is written in a stream function   – vorticity   variables [1]: 
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On the outer boundary of the periodic cell with radius h (line AD), the Kuwabara conditions are 

adopted [2] 

 0  , y   (2) 

On the surface of the body (line BC) no-slip conditions are applied 

 0  , 0
n





 (3) 

On the lines AB and CD the symmetry conditions are taken 

 0  , 0   (4) 
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Figure. 1. Computational domain in the physical (a) and canonical (b) plane. 

 

Let us introduce the function of conformal mapping of a rectangular area in a canonical plane 

i     (Fig.1, b) to the region of flow in the physical plane z x iy   (Fig.1, a) 
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where ka  are the real coefficients that are found from the numerical solution of the problem of 

conformal mapping [3]. The size of the rectangular domain is 0 , 0 L       where the value L 

is determined in the course of the conformal mapping. Note that for the domain of an arbitrary shape 

the Laurent series (5) can be infinite but we use finite but large value N (the number of members of the 

Laurent series) to provide needed accuracy of conformal mapping. 

Dividing the real and imaginary parts in (5) we obtain: 
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It is known that in curvilinear coordinate system the Laplace operator has the form 
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where Lame coefficients are expressed as 
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The Cauchy–Riemann conditions / /x y      , / /x y       are for the functions (6). In this 

case 
1 2H H  and operator (7) has the form 

1

, ,x y H       

where 2 2 , / cos , / sink k

k kH x ka e k x ka e k                     

After transformation from the physical coordinates x, y to canonical ,   ones the equations (1) is 

written as: 

 
( , )

0

H   



   

 
 (8) 

The equations (8) are supplemented by the boundary conditions that correspond to the conditions 

(2–4). On the left side BC of the rectangle 

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012080 doi:10.1088/1757-899X/158/1/012080

2



 

 

 

 

 

 

 0  , / 0     (9) 

On the right side AD 

 0  , sink

ka e k   (10) 

On the top and bottom sides CD, AB  

 0  , 0   (11) 

To solve Eq. (8) with the boundary conditions (9–11) by finite difference method we introduce the 

meshing of computational domain ABСВ with nodes  ,j i   so that j jh  , 0,j M , i ih  ,

0,i N . We determine the discrete values of the functions  ,i

j j i    ,  ,i

j j i     in the 

nodes. Approximating the partial derivatives of order 2 by central differences, we can write Eq. (8) in 

a discrete form 
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where  ,i

j j iH H   . The boundary conditions (9–11) on lines BC, AD, AB , CD are written as: 

 0 0i  ,  1 0 0i i h    (14) 
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M  , sini kL

M k ia e k   (15) 

 0N

j  , 0N

j   (16) 

 0 0j  , 0 0j   (17) 

To obtain the system of algebraic equations (SAE) for 
i

j , 
i

j  Eq. (10–11) are written in the form 

 
1 1

1 12 2 2 2 2 2

1 1 2 2 1 1i i i i i i i

j j j j j j jH
h h h h h h     

      

 

 
         

 
 (18) 

 
1 1

1 12 2 2 2 2 2

1 1 2 2 1 1
0i i i i i

j j j j j
h h h h h h     

     

 

 
       

 
 (19) 

Taking into account the conditions (14–17) we will obtain SAE of order 4×((M–2)×(N–2))
2
. The 

direct solution of the SAE requires more memory but is more effective than the separate solution of 

(18) и (19) and use of iterations for the converged joint solution. 

2.  Results and discussion 

As a test the flow around the cylinder in a periodic cell with the Kuwabara conditions is solved. The 

problem has also an analytical solution [2] 

 31
( , ) ln sina r A Br Cr r Dr

r
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 (20) 
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where 0.5 (1 / 2) / ,A k   0.5 (1 ) / ,B k    1/ , 0.25 / ,C k D k     2h  ,
20.25 0.5ln 0.75k     , 2 2r x y  , arctg( / )y x  . 

A numerical solution for M=N=100 is compared with analytical formulas (20–21). To estimate the 

accuracy of the developed method the absolute 
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were calculated. The distributions of the quantities ( , )E x y  и ( , )E x y  are shown in fig.2,a and 2,b 

respectively. The values of relative error are 0.003267  , 0.017285  . The conclusion can be 

made that the developed method gives high accuracy. 
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Figure 2. The distributions of ( , )E x y , ( , )E x y  

 

The problem of fluid flow around an elliptical cylinder with half-axes 1 0.5a  , 2 1a   and radius 

of outer boundary h=5 has been solved. Examples of calculated streamlines and vorticity isolines in 

the physical and canonical planes are given in fig.3.  
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Figure 3. The streamlines (a, c) and vorticity (b, d) isolines in the physical (a, b) and canonical (c, d) 

planes. 
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