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Abstract. This article describes the features of the application of an algorithm with using of 

decomposition methods for solving the binary classification problem of constructing a linear 

classifier based on Support Vector Machine method. Application of decomposition reduces the 

volume of calculations, in particular, due to the emerging possibilities to build parallel versions 

of the algorithm, which is a very important advantage for the solution of problems with big 

data. The analysis of the results of computational experiments conducted using the 

decomposition approach. The experiment use known data set for binary classification problem.  

1. Introduction 

The classification problem is one of the most popular big data problems. Often their solution reduces 

to optimization problems. However, the traditional computational approaches for solving optimization 

problems is not effective because of the large number of variables and constraints. For such problems, 

the calculation itself is gradient of function is a time-consuming task. Even worse is placed when the 

methods of the second order are used. Therefore, decomposition approach for solving such problems is 

promising, as it allows to reduce the solution to a simple computational procedures, as well as makes it 

possible to build distributed and parallel algorithms for solving big data problems. 

 In [1] was considered decomposition approach to the construction of coordinate descent algorithms 

for problem min ( )
X


x
x  where objective function define as sum ( ) ( ) ( )f h  x x x , ( )f   is a 

smooth, but not necessary convex function in Euclidean space nR , ( )h   is convex, but not necessary 

smooth function what is more 
1

( ) ( )
m

i

i

i

h h


x x , 1 2 ... mX X X X    , 
i

iXx  1..i m . The 

partition of vector nRx  into components 
1{ }i m

ix  determines the possibility of using the 

decomposition approach.  

 In this paper, the algorithm will be reformulated for the case of classification problem solving 

method of Support Vector Machine and held on the known problems of the analysis of computational 

experiment ([2]). 

  

2. Algorithm for Support Vector Machine method with decomposition  

Let us formulate the optimization problem of Support Vector Machines for construction of linear 

binary classifier ([3]). 
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 Suppose we have a training set of 0K   examples ( , )i iyx 1..i K of two known classes. There 

i LRx - L -dimensional vector characteristics, { 1;1}iy    is a class label. The binary classification 

problem is a problem of constructing a linear classifier as a hyperplane , 1w x where LRw . 

 Traditionally ([3]) Support Vector Machine method determines the separating hyperplane as a 

solution to the following optimization problem: 

2

1

min 0.5
K

i

i

C 


  
w

w     (1) 

with constraints 

, 1 , 1..i i iy i K  w x     (2) 

0, 1..i i K   .     (3) 

 The variables i  1..Ki   allows to determine the penalty for the error in determining the well-

known i -th example to another class, 0С  - fixed constant. 

 Instead, the problem (1) - (3) usually its dual problem solves: 

0 , 1..
1 1 1

max 0.5 ,
i

K K K

i s t s t s t
C i K

i s t

y y


  
  

  

   x x , (4) 

where i , 1..Ki  are dual variables, whereby their optimum values the vector coefficients 

hyperplane w  can be obtained: 

1

K

i i i

i

y


w x .     (5) 

 Thus, we can solve instead of the problem (1) - (3) with a large number of constraints its dual 

problem (4) a large number of variables, but with simple constraints, and then to obtain the solution of 

primary problem (1)-(3) using formula (5).  

 The problem (4) has a form suitable for decomposition. The set 

1 2{ ( , ... ) 0 , 1.. }K K iX R C i K          allows decomposed of the vector   on 0m 

disjoint groups of variables 
i 1..i m  and their corresponding sets of iX . Thus, we have 

1
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  ,      
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( ) 0.5 ,
K K

i j i j i j

i j

f y y
 

    x x . 

 In paper [1] it was proved that the solution of problem решение задачи (4) 
*  is a solution a 

mixed variational inequality 
* * *

1 1

( ), ( ) ( ) 0
m m

i i i i i i
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i i

h h
 

      g Y Y    for all vector 

i

iXY , 1..i m . Here ( )i i
g   is a vector with components of the gradient of the function ( )f   

corresponding group of variables 
i .  

 After apply the methods for mixed variational inequalities problem we can using as a the direction 

of decrease of the function ( ) ( ) ( )f h      in point    the vector KRd  which components 

are follows: 
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 Here ( )Y   is a solution with a predetermined   for a problem: 

 2
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, 1..
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i i i i i

i
X i m
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  .   (7) 

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012006 doi:10.1088/1757-899X/158/1/012006

2



 

 

 

 

 

 

 Obviously, the problem (7) can be decomposed into the m problems of follow form: 
2

1min ( ), 0.5 ( ) 1..
i

i

i i i i i

i
X

h i m 


    g Y Y Y


  .       (8) 

 These problems may be solved independently including their parallel solution. 

 For determining the direction of decrease of function ( )   according formula (6) the index 
0i

should also be specified. For this index the following condition  must be performed: 

0 0
( )i iY    .      (9) 

 Here 0   is the parameter that provides a choice of reasonably good direction of decrease. If 

such an index does not exist, the value of parameter decreases (for example, values of parameter  we 

can choose from sequence { }i : lim 0i
i




 ). 

 The search of index 0i  can be carried out from sequentially view the decomposed set of variable 

(we call it decomposed block). The origin of this search can be random. Then we must to solve for 

decomposed block the problem (8) and to check the condition (9). After obtaining the index 0i   all 

remaining unsolved problems (8) for other decomposed blocks will not be further considered. 

  Then we must calculate the step O  on the found direction KRd . In paper [1] it was proved 

that is sufficient to provide a reduce of the objective function is not less than an amount proportional 

to the 
0 0

2

( )i iY  . Such step can be easily found using finite procedures. Note that the increase of 

value ( )  is possible only at 0i  variable component from vector  . Therefore, the step on descent 

direction can be found if minimized only those terms of function ( )   which depends on the variable 

0i
 . It also reduces the computational complexity. So, we move on to the next iteration point:  

new   d  . 

 In paper [1] it was proved that this process converges to the solution of the problem (4). 

Calculations can be stopped according to heuristic conditions about values of the objective function in 

neighboring iterative points. 

  

3. Experimental study of the effectiveness of decomposition 

The experiment contains several typical problems generated by well-known learning sets from 

samples (a1a, a2a, a3a, a4a, a5a, a6a, a7a, a8a, a9a, [2]). These samples containing an examples with 

the vectors of characteristics with size 14L  . 

 The solution was carried out with the help of three variants of the algorithm - sequential version 

without decomposition, sequential version with decomposition and parallel version using OpenMP. 

 The experiment was provided by a series of random samples from the data set with sizes 

100,250,500,700,1000,1500K  . We solved more than 100 different problems. The auxiliary 

problems (8) was solved using a gradient projection method. 

 The tests looked at various options of decomposed blocks of contiguous variables. Size of 

decomposed blocks took up the same (except for the last block, which contains all the remaining 

variables). 

 The following table shows the average time (in seconds) for solving the problem (4) by sequential 

version without decomposition ( 1T ) and with decomposition ( 2T ). Also in Table 1 the count of 

example in sample ( K ) and the size of decomposed block ( S ) are listed. 

 As seen from Table 1 for small amounts examples in the sample the decomposition approach has a 

little effect. When the sample size 700K   difference becomes noticeable and in the future it begins 

to grow very quickly. Thus, the decomposition approach can give a great effect for serious practical 

problems. 
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Table 1. The time without decomposition and with it. 

K  S  
1T  2T  

100 2,10,50 <<1 sec <<1 sec 

250 100 12 sec 4 sec 

500 250 75 sec 15 sec 

700 400 298 sec 48 sec 

1000 500 30 min 140 sec 

1500 500 1 hour 45 min. 346 sec 

  

 Then give the solution time performance when using the same decomposition in sequential ( 3T ) 

and parallel ( 4T ) versions of the algorithm. We note immediately that the size 500K  of the training 

set for the parallel version provides the benefits only for a small amount of decomposed block. In 

other cases, there was even the same time sequential and parallel versions of the algorithm. This is 

probably due to overhead costs of the time for parallelization problems. 

 

Table 2. The time with different sizes of decomposed blocks. 

K  S  
3T  4T  

1000 10 60 sec 18 sec 

1000 50 21 sec 5 sec 

1000 100 13 sec 8 sec 

1000 200 21 sec 10 sec 

1000 300 32 sec 28 sec 

1500 100 39 sec 18 sec 

1500 200 37 sec 14 sec 

1500 300 48 sec 38 с sec 

1500 500 254 sec 204 sec 

 

 As can be seen from Table 2, the use of parallel version of the algorithm have advantages in almost 

all values of the decomposed block sizes, but it becomes sensible when the size of at least 5 times 

smaller than the training set size. Another interesting conclusion is that with decrease of the 

decomposed block size the time is decreased for both versions of the algorithm only to a certain 

moment. Further reduction of the size decomposed block increases the computational time. So, it is 

clear for 1000K   in the sequential version of the algorithm between 50 and 100 variables in the 

block. The computational time is worsened in 1.6 times. Parallel version worsened the time later – 

between 10 and 50 variables in a block. For 1500K   we observe the same behavior between 100 

and 200 variables in a decomposed block. 

 

4. Conclusions 

In general, the experiment allows us to conclude that the decomposition approach for solving the 

Support Vector Machine optimization problem (1)-(3) can provide significant effect. Note that the 

implementation of the algorithm is independent of the way of partition variables into decomposed 

blocks. Using of decomposition, compute the direction of descent the objective function (6) saves 

computing resources. However, an excessive reduction in the size of the decomposed block can lead to 
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additional computational time. Therefore, the size of the decomposed block is recommended in 5-10% 

of the training sets size. 
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