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Abstract. The article examines a problem of large deflections and elastic jumps from one
equilibrium state to another in a thin-walled structure in the form of a thin elastic cylindrical
panel with imperfections in the form of a small-scale additional wave formation. An analytical
solution of the problem was obtained and an analysis of the influence of geometric
characteristics on the panel deformation process was made.

1. Basic relations

We investigate thin elastic shallow cylindrical panel with imperfections in the form of n half-waves,
subjected to a transverse load P (Figurel, a panel without imperfections is shown by dash lines). We
believe that the force P is applied with some certain eccentricity &, and that the wave formation is

represented according to the law a, (cos(zn&/2)—cos(zn/2)). We search for dependence of the w

panel moving due to a transverse linear load P, as well as impact of the wave formation on the critical
load.
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Figure 1. n=11, a,/a,=0.11r,/b=2.

The following dimensionless values are introduced,
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where 2/ and 2b — are thickness and length of the panel; W, V' — are moving along the normal and in
the tangent directions regarding the panel; £ — is a Young module of the material; a, — is an arrow of
the panel rise; a, — is an amplitude of the wave formation.

The equation of the bent axis is represented as [1]:

2

yz\/(%j —§2—#+%(cos(7rnr§/2)—cos(;rn/2)), k=yr?—(L—-2a,) . (1)

where 1, — is a radius of the cylindrical panel.
The arch element equilibrium equations take the form [2]:
T-2No NPT o0, 6obn =g, 0
r r
where dash lines from now on mean a derivative with respect to dimensionless coordinate &, T and N

— is tangential and transverse forces, G — is a moment of deflection.
Because of the flatness of the arch we can accept [2]:

T —const; N~ =W
b* b
It follows from the second and the third equations (2) that:

G -2 =0, ©
r
b2
where z* =-T o is a dimensionless compressive force.

The equations for each element take the form (3), but for the right and left parts of the panel their
solutions will be different because of the load P.
The relation between the bending moment and deflection for the elastic material takes the form:
D

G=-DN= —Fw :
The relation between the curvature of the panel and its deflection:
1=(y+wb)”—=£+w"—. (4)
r I
Substituting the expression for G into the equation of equilibrium (3), we obtain:

W+ W+ 1 (E +n*acos %} =0. (5)
r

0

2. Solutions
The general solution of the equation (5) takes this form

w =B, cos u& +B,sinué +B,E+ B, + (&),

acos”—éz (6)
2 a nzé |
M) =40) g =4 ™2

or the matrix form:
w=[B]{X}+f(¢);
[B]=[B., B, B,, B,] ; {X} ={cosué, sinué, & 1.
The unknown coefficients B, are found from the boundary conditions. Let us denote a deflection in
the left and right parts from the point of force application P as follows:

()
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w =[CI{X}+ (&) w =[B]{X}+ (). ®)
Next, let us write the conditions of docking at the point of force application
W (950) =W, (950) » W (‘fo) =W (égo) ;
le (50) = er (50) : WI (50) = Wr (50) —-q
Let us rewrite the conditions of docking with & =& in the matrix form
[H]{c}=[H]{B}+{0.0.0-a}, {C}=[cT. {B}=[B],
COs 448, sin ué, S 1
[H]- —psinug,  ucosus, 10
| —fcospéy  pisinug 00
pisinpug,  —pcosug, 00
The relation between the coefficients for deflections w; and w, will take the form
{C}={B}+[H] {0, 0.0, ~q}'. (10)
As it follows from the relation (10), it is necessary to find only the last column of the matrix [H ]‘l.
Let us write it for {Z}. Then

9)

[H]{z}={0, 0,0, 1}". (11)

The solution of the equation (11) takes the form

{Z}Z{sin,ufo Ccospd, 1 _Q}T'

3 ! 3 ! 2 2

u u u U
It follows from (10) that
[C]=[B]+[F] . [F]=[-sinu&, cosus, —u u&]al . (12)
In order to get a connection between the power g and the force of compression x° it is necessary to
find one more equation. For this purpose we substitute the expression for &, expressed in terms of
displacement w u v, into the relation of Hook's law, connecting the force x° and the tangential
deformation ¢. From the obtained equation we can find v for the left and right parts. The sought
equation regarding g and x will be a condition of equality of the displacement value v at the point of
force application g, calculated according to the formulas for the right and left parts.
Given the Hook's law T = K& =3D/h%, we obtain:
h2

E=— W . (13)
The deformation & is expressed in terms of w, v according to the formula
dv b 1, .2
E=———W+=(W)
dé 2
Hence, for the left and right sides, taking into account (13) we obtain the expression for v:
h2 ¢ b ¢ l
v, =—y2—2(§+1)+ j—w,daj— j—
£ (14)
Vv, =— 3b2(§ 1)+ I wdé - j

1
Here we have the boundary conditions v(+1)= O in mind. The condition of docking at the point of

force application takes the form
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VI(§O)_Vr(§O):O' (15)
After substitution of w, and w, from (8) we obtain a quadratic equation regarding q:
ng*+yq+7=0, (16)

By setting different values for x, we obtain the appropriate values for g. According to the formulas
(8), (12) we can find displacements at any point.

3. Results and discussion
Farther, let us consider a case of panel rigid packing. The boundary conditions are written through a
deflection:
W, (-1)=0; w,(1)=0; w,(-1)=0; w,(1)=0. 17)
Then the coefficients, included into the expression for the deflection (7) are derived from the system
(17) and takes the form:
2
(—q + 2/“:— + qcos(y(1+ 50))] coseq () 8a,mu’coseq (u)sin (nzﬂj
{B} = 2q 3 - - 2 +
H q

7zq(m27r2 —4;12)

—pi&y— p1cos (p(1+ &) )+ sin(u(1+ &) pu(p(1+&))cos(p)—sin( ) —sin(us,)
2ucos () —2Sin(u) ’ 2,ucos () —2sin( )

(18)

2

{32a1y5cos (%Zj +7° (m?*z - 4/12)(—;{(4 - ﬂr— + qéj +0sin(u(1+ Cfo))} +

0

0

7Z'(m27r2 —4y2)£—q + Zu—zj +
+7cot(u) L (Zﬁzq(m2ﬁ2—4y2))il .

7rq(m27z2 —4u2)COS(,u(1+ éo))—16a1ny4sin(n7ﬂj

Let us consider the case of the centrally applied force under &,=0, given that the loading is rigid,
providing the symmetrical deformation.

Figures 2-3 shows the dependences q=q(x) and q=q(w,), W, =w(0). Hereinafter, the dash
lines show the dependences for the cases in which there are no imperfections. We can see that g>0 all

the time, it means that after the loss of panel stability it is necessary to apply an additional load in
order to keep it back.
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Figure 2. n=7, a,/a,=0.1,1,/b=2,£,=0. Figure 3. n=7, a,/a,=0.1,1,/b=2,£ =0.
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Figure 4 shows the dependences of the critical load ¢. of the type and amplitude of wave
formation. Figure 5 represents the dependences of the critical load g. on the amount of half-waves n.

The diagram shows, that under small values of n there is a noticeable change in the critical load. The
critical load under sufficiently large n is close to the value for the case in which there are no
imperfections.
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Figure 4. n=7, r,/b=2,& =0, Figure 5. n=7, r,/b=2,& =0,
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The dependences of the critical load on the application point is shown in Figure 6. The forms of the
deformed panel in the case of a centrally applied force under the different values of g are shown in
Figure 7. Because of the hard boundary conditions, only the symmetric form of loss in stability is
realized.
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Figure 6. n=7, 1, =2, a,/a,=-0.1 Figure 7.n=7, 1,/b=2,5,=0, a,/a,=-0.1
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