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Abstract. An analytic solution to the Williams equation in the thermal creep flow problem in 

the channel, formed by two coaxial cylinders, has been constructed using the kinetic approach. 

For the boundary condition on the channel walls, the diffusion model is used. Taking into 

account the constructed distribution function for various values of the ratio of radii of cylinders 

and Knudsen number, the value of the mass flow rate in channel is calculated. The analysis of 

the obtained results during the transition to free molecular and hydrodynamic regimes is done. 

1. Introduction 

From the point of view of applications, one of the most important problems in the dynamics of a 

rarefied gas is the study of gas flow in a channel [1]. In the wake of the development of micro and 

nanotechnologies, considerable attention has been paid recently to analysis of gas flows in channels 

with arbitrary cross sections. For example, the flow of a rarefied gas in a channel, formed by two 

coaxial cylinders, in a channel with constant rectangular and elliptical cross sections was considered in 

[2-4], respectively. In [5], the problem of mass and heat transfer was viewed in a cylindrical channel 

with constant pressure and temperature gradients by using Shakhov’s model of Boltzmann kinetic 

equation for cylindrical channels. In [6] the profiles of the mass flow velocity of the gas and the heat 

flux vector in the channel in free molecular regime have been constructed. A more comprehensive 

analysis of the current state of the issue on the study of rarefied gas flows in channels one can found in 

[7]. The aim of this work is to construct an analytic solution to the problem of the thermal creep flow 

in the channel, formed by two coaxial cylinders under the action of a small thermal pressure drop by 

using the Williams equation. In this work, for the boundary conditions on the channel walls, we used 

diffuse reflection model. As a supplement, we constructed a profile of the gas mass velocity in the 

channel for various values of the ratio of radii of cylinders and Knudsen number. 

2. Statement of the problem and mathematical model 

Let us consider a channel, formed by two coaxial cylinders with radii 
'
1R  and 

'
2R  (

'
1

'
2 RR  ). We 

assume that a constant temperature gradient is maintained in the channel along the 'Oz  axis. We use 

the diffuse reflection model for the boundary condition at the channel walls. We denote by r  the 

radius vector of gas molecules, by ' ,  , 'z  their cylindrical coordinates in configuration space, and 

by zv,v,v   - projection of velocity vector v  on the coordinate axes. 

Mass flux through the channel cross section we define according to [7] as 
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Hear m  and n  are the mass and concentration of the gas molecules, )'(' zu  – 'z -component of 

the mass velocity of gas. 

The mass velocity of gas we obtained proceeding from the statistical meaning of the distribution 

function ),'( vrf  [8] 

 vvr
3),'(v

)'(

1
)'( df

zn
u zz  . 

For the sake of convenience in further computations, we pass in previous expressions to the 

dimensionless variable, by considering 
'
2/' R , 

'
2/' Rzz   as the coordinates of the dimensionless 

radius vector; vC
2/1  as the dimensionless velocity of gas molecules, there  02/ Tkm B , Bk  is 

the Boltzmann constant, 0T  is the gas temperature at a point chosen as the origin of coordinates. As a 

result, we obtain the following expressions for dimensionless mass velocity and a mass flux:  

 CCr
322/3 ),()exp()( dfCCU zz    , (1) 
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The distribution function of gas molecules
 ),'( vrf  we obtain from Williams equation, which in 

the chosen coordinate system can be written in the form [9] 
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Here quantities *n , *u  and *T , entering into *f , are not the local density, temperature, and velocity, 

but are certain parameters that are chosen from the condition that the model collision integral satisfies 

the laws of conservation of the number of particles, momentum, and energy [9]. For the diffuse 

reflection model for the boundary condition at the channel walls we can write 

 )'()'( v,rv,r ss ff 
,    0vni , 2,1i . (4) 

Here )'( v,r sf 
 – distribution function of gas molecules, reflected from the surface of the channel, 

)'( v,rsf  – local equilibrium distribution function with the parameters on the streamlined gas 

cylindrical surfaces, 1n  and 2n  are the normal vectors to the surfaces of the cylinders, which are 

directed into the gas, 
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We assume that a relative temperature drop over the mean free path of gas molecules is small. 

Then, the problem allows linearization, and the coordinate and velocity distribution function of gas 

molecules can be written in the form 

 )),(),(1)(()( 00 CCrv,r' ZСhCff z , (6) 
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Here )exp()/()( 22/3
00 CnCf    is absolute Maxwellian, TG  is the dimensionless temperature 

gradient, and ),(0 CZ  is the linear correction to the local equilibrium distribution function, which 

takes into account the influence of the walls, '
2/ RlKn g  is Knudsen number, pl gg   21  is the 

mean free path of the gas molecules. 

Substituting (6) into (3), we arrive at the equation for finding function ),(0 CZ : 
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For the sake of convenience in further computations, we pass in (7) to the spherical coordinate 

system in the velocity space, assuming that  sincosCC  ,  sinsinCC  , cosCCz  , 

where the angles   and   are measured from the positive directions of the axes C  and zC . The 

boundary conditions by taking into account (4), (5) we rewrite as follows 
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We seek a solution of (7) in the form of decomposition in two orthogonal functions 1)(1 Ce  and 

)2/(5)(2 CCCe  : 
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The orthogonally here is understood as the equality to zero of the integral 






0
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21 )exp()()( dCCСCeCe . Substituting (9) into (7), we arrive at the following system of 
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with boundary conditions 
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KnG
UZ  ,   01 Cn , 02 Cn , (12) 

 0)sin,,(2 
s
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It is easy to see from direct substitution that the solution (10) with boundary conditions (12) has the 

form: 
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From (13) we can see, that the boundary conditions for )sin,,( 12 RZ  are homogeneous: 

 0)sin,,( 12 RZ ,  0cos  , (15) 

 0)sin,,1(2 Z ,  0cos  . (16) 

Here 211 '/' RRR  . 

The solution of equation (11) with boundary conditions (15) and (16) is sought by the method of 

characteristics [10]. The system of equations for characteristic of equation (11) has the form: 

 dt
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Integrating this system of equations, we obtain the two first independent integrals:  
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The integration constants 1C  
and 2C  

in (18) we exclude using boundary conditions (15) and (16).  

Thus we obtain 

   1exp)sin,,(2  ktZ  , 2,1k .  

The value of the variable t  we determine from the condition that the reflection of molecules from the 

surface of the inner cylinder occurs at   : 
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and at   2  reflection occurs from the surface of the outer cylinder: 
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Substituting the distribution function (6) in (1) and taking into account the obtained results, we find 

dimensionless mass velocity of gas in the channel 
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The values of MJ  that we found according to (2) using the computer algebra system Maple 17 

under different Knudsen number and relationship of the radii of the cylinders 
'
1R  and 

'
2R  are given in 

table 1. 
 

Table 1. Values of MJ  for various ratios '/' 21 RR . 

Kn
 

 '/' 211 RRR   

0 0 [5] 0.01 0.1 0.5 0.9 

0.0001 0.0001 - 0.0001 0.0001 0.0001 0.0001 

0.0010 0.0008 - 0.0008 0.0008 0.0008 0.0008 

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012038 doi:10.1088/1757-899X/158/1/012038

4



 

 

 

 

 

 

0.0100 0.0083 0.0116 0.0083 0.0083 0.0082 0.0076 

0.1000 0.0764 0.1020 0.0764 0.0757 0.0698 0.0414 

0.5000 0.2705 0.3027 0.2695 0.2601 0.2014 0.0761 

1.0000 0.3881 0.3968 0.3862 0.3684 0.2660 0.0878 

2.0000 0.4977 0.4784 0.4948 0.4677 0.3208 0.0963 

5.0000 0.6080 - 0.6040 0.5666 0.3724 0.1034 

10.000 0.6632 0.6280 0.6586 0.6158 0.3970 0.1065 

100.00 0.7376 0.7210 0.7321 0.6816 0.4290 0.1103 

1000.0 0.7502 0.7493 0.7446 0.6927 0.4342 0.1108 

10000 0.7520 - 0.7463 0.6943 0.4349 0.1109 

3. Results and discussion 

Profiles of the z -components of the mass velocity in the channel, calculated according to (19), are 

given on figures 1 and 2. The case 01 R  is described the processes of mass transfer through the cross 

section of round pipe without internal cylinder. 

 

 

 

 

 

 
Figure 1. )(zU  for 100Kn  

01 R , 1.0  and 5.0  (from left to right).. 

 

From the presented figures one can see that at 0Kn  the distribution of mass velocity has a 

maximum, which shifts toward the inner cylinder with the decrease of its radius. When 11 R  and 

1Kn  the distribution of the velocity profile close to a paraboloid of rotation. 
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Figure 2. )(zU  for 1.01 R  (top row) and 5.01 R  (bottom row) 

for 01.0Kn , 1 and 5 (from left to right).. 

 

For the close to the free molecular flow regime expression (19) for the mass velocity we can to 

decompose in a series in the small parameter Kn/1 . In this case, by limited to the linear terms of the 

expansion, according to (2), we find 
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The expression (20) defines a specific mass flow through the channel with cross-section formed by 

two coaxial cylinders, in a free molecular flow regime, under the effect of the longitudinal temperature 

gradient. For the case 01 R  integrals in (20) may be calculated analytically. In this case 

)3/(4/ TM GJ , that coincides with the result of the cylindrical channel [7]. For flow regimes 

close to the hydrodynamic regime, analysis of the expression (19) gives the following result 

 
6

5 KnG
J T

M  . (21) 

Thus, for the regime close to the hydrodynamic, specific mass flux does not depend on the radii of 

the cylinders. The last statement is confirmed by the results presented in table 1 for 001.0Kn . From 

(21) one can obtained, that the thermal slip coefficient is equal 6/5  and it is considering with the 

corresponding result, obtained in [11]. 
The results of calculations for the specific mass flow for 100000001.0  Kn  and 00.01 R , 0.01, 

0.10, 0.50 and 0.90 are presented in table 1. For comparison, let us consider the values obtained in [5] 

using Shakhov’s model of Boltzmann kinetic equation for cylindrical channels. The difference 

between the values in table 1 we can explained by the fact, that the macro parameters of gas in the 

problem on thermal creep strongly depend on the choice of model of collision integral [7]. 

4. Conclusions 

In this work, we have calculated the gas mass flux in a channel, formed by two coaxial cylinders. The 

profiles of the mass flow velocity of the gas in the channel have been constructed. For different values 

of Knudsen number and various ratios of cylinder radii the specific gas mass flux through the channel 

cross section have been calculated. The analysis of the obtained expressions is done. It is shown that in 

extreme cases then 1Kn  and 1Kn , the results obtained in this work are moving in similar 

results for the hydrodynamic and free-regimes, respectively. 
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