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Abstract. We propose a conditional minimization method of the convex nonsmooth function 

which belongs to the class of cutting-plane methods. During constructing iteration points a 

feasible set and an epigraph of the objective function are approximated by the polyhedral sets. 

In this connection, auxiliary problems of constructing iteration points are linear programming 

problems. In optimization process there is some opportunity of updating sets which 

approximate the epigraph. These updates are performed by periodically dropping of cutting 

planes which form embedding sets. Convergence of the proposed method is proved, some 

realizations of the method are discussed. 

1. Introduction 

Some algorithms from a class of cutting methods (e. g. [1 — 9]) are used to solve many applied 

optimization problems. Examples of these problems which are successfully solved by the mentioned 

methods can be found in [10 — 12]. Cutting methods are chosen for solving optimization problems, 

because there are some possibilities of estimating the proximity of the value of the objective function 

at the current iteration point to the optimal value. 

 Usually during practical implementations of the cutting methods there is some problem of 

accumulating cutting planes which form approximating sets. In this work the proposed method 

belongs to the mentioned class of methods and is characterized by using operation of simultaneous 

approximating the epigraph and the feasible set. The main feature of the method is possibility of 

updating embedding sets due to discarding any cutting planes. 

2. Problem Settings 

A problem 

                                                              𝑚𝑖𝑛{ 𝑓(𝑥) ∶  𝑥 ∈ 𝐷},                                                                (1)  

 

is solved by the proposed method, where 𝑓(𝑥) is a convex function defined in 𝑛-dimensional 

Euclidian space 𝑅𝑛, and a set 𝐷 ⊂ 𝑅𝑛 is closed and convex. 

 Suppose 𝑓∗ =  min{𝑓(𝑥): 𝑥 ∈ 𝐷} > −∞ , 𝑋∗ = {𝑥 ∈ 𝐷 ∶ 𝑓(𝑥) = 𝑓∗}, 𝑥∗ ∈ 𝑋∗,  

 

𝑒𝑝𝑖 (𝑓, 𝑅𝑛) =  {(𝑥, 𝛾) ∈ 𝑅𝑛+1 ∶ 𝑥 ∈ 𝑅𝑛, 𝛾 ≥ 𝑓(𝑥)},  
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and let 𝑖𝑛𝑡 𝑄 be an interior of the set 𝑄, 𝑊(𝑢̅, 𝑄) be a cone of the normalized generalized-support 

vectors at the point  𝑢̅ for the set 𝑄, assign 𝐾 = {0, 1, … }. 

3. Minimization Method 

The proposed method constructs an auxiliary sequence { 𝒖𝒊}, 𝒊 ∈ 𝑲, and a base sequence of 

approximations {𝒙𝒌}, 𝒌 ∈ 𝑲, for solving problem (1) by the following rule. Select points 

 

𝒗′ ∈  𝒊𝒏𝒕 𝑫,    𝒗′′ ∈  𝒊𝒏𝒕 𝒆𝒑𝒊 (𝒇, 𝑹𝒏). 
 

Choose a convex closed bounded set 𝑴𝟎 ⊂ 𝑹𝒏 and a convex closed set 𝑮𝟎 ∈ 𝑹𝒏+𝟏 such that 

 

𝒙∗ ∈ 𝑴𝟎,    𝒆𝒑𝒊(𝒇, 𝑹𝒏) ⊂ 𝑮𝟎. 
 

Define numbers 𝜸̅, 𝜺𝒌, 𝒌 ∈ 𝑲, according to conditions 

 

𝜸̅ ≤ 𝒎𝒊𝒏{ 𝒇(𝒙) ∶ 𝒙 ∈ 𝑴𝟎}, 
 

                                                      𝜺𝒌 > 𝟎, 𝒌 ∈ 𝑲, 𝜺𝒌 → 𝟎, 𝒌 → ∞.                                                    
(2) 

 

Assign 𝒊 = 𝟎, 𝒌 = 𝟎. 

1. Find a solution 𝒖𝒊 = (𝒚𝒊, 𝜸𝒊) of the following problem 

 

                𝐦𝐢𝐧{ 𝜸 ∶ (𝒙, 𝜸) ∈ 𝑮𝒊, 𝒙 ∈ 𝑴𝒌, 𝜸 ≥ 𝜸̅},                                                  (3) 

 

where 𝒚𝒊 ∈ 𝑹𝒏, 𝜸𝒊 ∈ 𝑹𝟏. 
2. Find  𝒖̅𝒊 = (𝒚̅𝒊, 𝜸̅𝒊) ∈ 𝑹𝒏+𝟏 as an intersection point of the segment [𝒗′′, 𝒖𝒊] with the border   

of the set 𝒆𝒑𝒊 (𝒇, 𝑹𝒏). If  

 

𝒖̅𝒊 = 𝒖𝒊,      𝒚𝒊 ∈ 𝑫,                                                                (4) 

 

then 𝒚𝒊 ∈ 𝑿∗, and the process of solving problem (1) is finished. 

3. If the inequality 

 

||𝒖̅𝒊 − 𝒖𝒊|| > 𝜺𝒌                                                                (5) 

 

is defined, then assign  

 

𝑮𝒊+𝟏 = 𝑺𝒊⋂{𝒖 ∈ 𝑹𝒏+𝟏 ∶ 〈𝒃𝒊, 𝒖 − 𝒖̅𝒊〉 ≤ 𝟎},                                           (6) 

 

where  

 

𝒃𝒊 ∈ 𝑾(𝒖̅𝒊, 𝒆𝒑𝒊(𝒇, 𝑹𝒏)),                                                            (7) 

 

𝑺𝒊 = 𝑮𝒊,                                                                         (8) 

 

and increment 𝒊 by one, go to Step 1. Otherwise go to Step 4. 

4. Assign 𝒊𝒌 = 𝒊, 

 

𝒙𝒌 = 𝒚𝒊𝒌
,   𝝈𝒌 = 𝜸𝒊𝒌

,                                                                (9) 

 

and construct a set 𝑮𝒊+𝟏 in accordance with (6), (7), where 𝑺𝒊 is a convex closed set such that  
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𝒆𝒑𝒊(𝒇, 𝑹𝒏) ⊂ 𝑺𝒊.                                                                  (10) 

 

5. If 𝒙𝒌 ∈ 𝑫, then assign 𝑴𝒌+𝟏 = 𝑴𝒌. Otherwise find  𝒙̅𝒌 as a point situated in the 

intersection 

 of the segment  [𝒗′, 𝒙𝒌] with the border of the set 𝑫, and assign 

 

𝑴𝒌+𝟏 = 𝑴𝒌⋂{𝒙 ∈ 𝑹𝒏 ∶ 〈𝒂𝒌, 𝒙 − 𝒙̅𝒌〉 ≤ 𝟎}, 
 

where 𝒂𝒌 ∈ 𝑾(𝒙̅𝒌, 𝑫). 
6. Increment 𝒊 and 𝒌 by one, and go to Step 1. 

 Lets make some remarks about the proposed method. Firstly, prove stopping criteria of the method 

which is represented at Step 2.  

 

Theorem 1. Suppose that expressions (4) is defined for some number 𝒊 ∈ 𝑲. Then the point 𝒚𝒊 is a 

solution of problem (1). 

 

Proof. In accordance with ways of choosing sets 𝑴𝟎, 𝑮𝟎, condition (10) and approach of constructing 

cutting planes it is easy to prove by induction that the feasible set of problem (3) contains the point 

(𝒙∗, 𝒇∗) for all 𝒊 ∈ 𝑲, 𝒌 ∈ 𝑲. Consequently, the solution (𝒚𝒊, 𝜸𝒊) of this problem satisfies the 

inequality 

 

                                                                            𝜸𝒊 ≤ 𝒇∗                                                                  (11) 

 

for any 𝒊 ∈ 𝑲, 𝒌 ∈ 𝑲. 

 Assume that the number 𝒊 ∈ 𝑲 is selected according to (4). Then 𝒚̅𝒊 = 𝒚𝒊,  𝜸̅𝒊 =  𝜸𝒊 = 𝒇(𝒚̅𝒊), and, 

consequently, 𝒇(𝒚𝒊) = 𝜸𝒊 is determined. But from (4) it follows that 𝒇(𝒚𝒊) ≥ 𝒇∗. On the other hand, in 

view of (11) we have 𝒇(𝒚𝒊) ≤ 𝒇∗. Thus, the equation 𝒇(𝒚𝒊) = 𝒇∗ is defined, and the theorem is 

proved. 

 Further, pay attention that there are some possibilities to update approximation sets 𝑮𝒊+𝟏 at  

iterations with numbers 𝒊 = 𝒊𝒌, and this is convenient from the practical viewpoint. These updates are 

performed on the basis of constructing sets 𝑺𝒊𝒌
. Namely, it will be shown below that for each 𝒌 ∈ 𝑲 

during constructing {𝒖𝒊}, 𝒊 ∈ 𝑲, the number 𝒊 = 𝒊𝒌 will be fixed such that 

 

||𝒖̅𝒊 − 𝒖𝒊|| ≤ 𝜺𝒌.                                                            (12) 

 

Then in view of (10) we can assign, for example, 𝑺𝒊𝒌
= 𝑮𝒓𝒊

, where 𝟎 ≤ 𝒓𝒊 ≤ 𝒊𝒌 − 𝟏. In this case we 

can discard some cutting planes which are constructed to the iteration 𝒊𝒌. On the other hand, the set 𝑺𝒊𝒌
 

can be constructed on the basis of the last cutting planes, in particular, by getting active planes at the 

point 𝒖𝒊𝒌
. 

 Note that in view of (10) we can assign 𝑺𝒊𝒌
= 𝑮𝒊𝒌

 for each 𝒌 ∈ 𝑲. Then the equality 𝑺𝒊 = 𝑮𝒊 is 

determined in (6) independently of conditions (5), (12), and updates of approximating sets do not 

occur. 

 

Lemma 1. Suppose that the sequence {𝒖𝒊}, 𝒊 ∈ 𝑲, is constructed while 𝑺𝒊 is defined in accordance 

with (8) for all 𝒊 ∈ 𝑲. Then  

 

𝐥𝐢𝐦 
𝒊∈𝑲

 ||𝒖̅𝒊 − 𝒖𝒊|| = 𝟎. 

 

Proof. Assume the converse. Then there is a subsequence {𝒖𝒊}, 𝒊 ∈ 𝑲′ ⊂ 𝑲, such that 
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  ||𝒖̅𝒊 − 𝒖𝒊|| ≥ 𝚫 > 𝟎   ∀𝒊 ∈ 𝑲′.                (13)  

 

Select a convergence subsequence {𝒖𝒊}, 𝒊 ∈ 𝑲′′ ⊂ 𝑲′, from the sequence {𝒖𝒊}, 𝒊 ∈ 𝑲′. Suppose 𝒊, 

𝒑𝒊 ∈ 𝑲′′ such that 𝒑𝒊 > 𝒊. From (6), (8) it follows that 𝑮𝒑𝒊
⊂ 𝑮𝒊. But 𝒖𝒑𝒊

∈ 𝑮𝒑𝒊
, and, moreover, 

𝒃𝒊 ∈ 𝑾(𝒖̅𝒊, 𝑮𝒑𝒊
). Consequently, we have 〈𝒃𝒊, 𝒖𝒑𝒊

− 𝒖̅𝒊〉 ≤ 𝟎. Since  

 

                                                    𝒖̅𝒍 = 𝒖𝒍 + 𝜶𝒍(𝒗′′ − 𝒖𝒍)                                                          (14) 

 

is defined for all 𝒍 ∈ 𝑲, where 𝜶𝒍 ∈ (𝟎, 𝟏), then from (14) and the last inequality it follows that   

 

〈𝒃𝒊, 𝒖𝒊 − 𝒖𝒑𝒊
〉 ≥ 𝜶𝒊〈𝒃𝒊, 𝒖𝒊 − 𝒗′′〉. 

 

In view of 𝒗′′ ∈ 𝒊𝒏𝒕 𝒆𝒑𝒊 (𝒇, 𝑹𝒏) it is not difficult to prove existence of the number 𝝈 > 𝟎 such that  

 

〈𝒃𝒍, 𝒗′′ − 𝒖𝒊〉 ≤ −𝝈 
 

for all 𝒍 ∈ 𝑲. Therefore, we get  〈𝒃𝒊, 𝒖𝒊 − 𝒖𝒑𝒊
〉 ≥ 𝜶𝒊𝝈 or ||𝒖𝒊 − 𝒖𝒑𝒊

|| ≥ 𝜶𝒊𝝈. Further, since the 

sequence {𝒖𝒊}, 𝒊 ∈ 𝑲′′, is convergence, then 𝜶𝒊 → 𝟎, 𝒊 ∈ 𝑲′′, is determined. Thus, from equality (14) 

for 𝒍 = 𝒊 it follows that  

 

||𝒖̅𝒊 − 𝒖𝒊|| → 𝟎,   𝒊 ∈ 𝑲′′. 
 

This limit expression contradicts to (13). The lemma is proved. 

 Now on the basis of Lemma 1 lets prove that according to (9) the sequence {(𝒙𝒌, 𝝈𝒌)} will be 

constructed with the sequence {𝒖𝒊}. 

 

Lemma 2. Suppose that the sequence {𝒖𝒊}, 𝒊 ∈ 𝑲, is constructed by the proposed method. Then there 

exist a number 𝒊 = 𝒊𝒌 for each 𝒌 ∈ 𝑲 such that (12) is defined. 

 

Proof. Assume 𝒌 ∈ 𝑲. Lets obtain inequality (12) for some 𝒊 = 𝒊𝒌. Suppose the converse, i.e. 

inequality (5) is determined for all 𝒊 ∈ 𝑲. Then sets 𝑺𝒊 are given by (8) for all 𝒊 ∈ 𝑲, and the statement 

of Lemma 1 contradicts to inequality (5). 

 

Lemma 3. Let {𝒙𝒌}, 𝒌 ∈ 𝑲′ ⊂ 𝑲, be a convergence subsequence of the sequence {𝒙𝒌}, 𝒌 ∈ 𝑲, and  𝒙̅ 

be its limit point. Then the inclusion  

 

                                                           𝒙̅ ∈ 𝑫                                                                      (15) 

is defined. 

 

Proof. If the inclusion 𝒙𝒌 ∈ 𝑫 is defined for infinitely many numbers 𝒌 ∈ 𝑲′, then in view of 

closedness of the set 𝑫 statement (15) is obviously obtained. That's why suppose that 𝒙𝒌 ∉ 𝑫 is given 

for all numbers 𝒌 ∈ 𝑲′ such that 𝒌 ≥ 𝑵 ∈ 𝑲′. 
 Note that  

 

    𝒙̅𝒌 = 𝒙𝒌 + 𝜽𝒌(𝒗′ − 𝒙𝒌),    𝒌 ∈ 𝑲′,    𝒌 ≥ 𝑵,                                 (16) 

 

where 𝜽𝒌 ∈ (𝟎, 𝟏). Lets choose numbers 𝒍, 𝒑𝒍 ∈ 𝑲′ such that 𝒑𝒍 > 𝒍 ≥ 𝑵. Since 𝑴𝒑𝒍
⊂ 𝑴𝒍, then 

𝒂𝒍 ∈ 𝑾(𝒙̅𝒍, 𝑴𝒑𝒍
). But from (9), (13) it follows that 𝒙𝒑𝒍

∈ 𝑴𝒑𝒍
, consequently, we have  

 

〈𝒂𝒍, 𝒙𝒑𝒍
−  𝒙̅𝒍〉 ≤ 𝟎, 
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and in view of (16) the inequality 

 

〈𝒂𝒍, 𝒙𝒍 − 𝒙𝒑𝒍
〉 ≥ 𝜽𝒍〈𝒂𝒍, 𝒙𝒍 − 𝒗′〉                                                    (17) 

 

is defined. Since 𝒙𝒌 ∉ 𝑫, 𝒌 ≥ 𝑵, 𝒌 ∈ 𝑲′ and 𝒗′ ∈ 𝒊𝒏𝒕 𝑫, then there exist a number 𝜹 > 𝟎 such that 

〈𝒂𝒌, 𝒗′ − 𝒙𝒌〉 ≤ −𝜹 for all 𝒌 ≥ 𝑵, 𝒌 ∈ 𝑲′. Further, taking into account (17) and ||𝒂𝒌|| = 𝟏 the 

inequality 

 

||𝒙𝒍 − 𝒙𝒑𝒍
|| ≥ 𝜽𝒌𝜹 

 

is defined for any 𝒍, 𝒑𝒍 ∈ 𝑲′ such that 𝒑𝒍 > 𝒍 ≥ 𝑵. From this inequality and convergence of the 

sequence {𝒙𝒌}, 𝒌 ∈ 𝑲′, it follows that 𝜽𝒌 → 𝟎, 𝒌 ∈ 𝑲′. Then in accordance with (16) and boundness 

of the sequence {||𝒗′ − 𝒙𝒌||}, 𝒌 ∈ 𝑲′, we get 

 

     ||𝒙̅𝒌 − 𝒙𝒌|| → 𝟎,    𝒌 ∈ 𝑲′.                                                     (18) 

 

Now lets select a convergence subsequence {𝒙̅𝒌}, 𝒌 ∈ 𝑲′′ ⊂ 𝑲′, from the sequence  {𝒙̅𝒌}, 𝒌 ∈ 𝑲′, and 

let 𝒙̃ be its limit point. Then in view of (18) we have  𝒙̃ = 𝒙̅, and from closedness of the set 𝑫 it 

follows that inclusion (15) is defined. The lemma is proved. 

 At last, lets obtain the theorem of convergence of the proposed method. 

 

Theorem 2. The following expressions  

 

𝒙̅ ∈ 𝑿∗,   𝝈̅ = 𝒇∗ 

 

are defined for any limit point (𝒙̅, 𝝈̅) of the sequence {(𝒙𝒌, 𝝈𝒌)}, 𝒌 ∈ 𝑲, which is constructed by the 

proposed method. 

 

Proof. Let (𝒙̅, 𝝈̅) be a limit point of the convergence subsequence {(𝒙𝒌, 𝝈𝒌)}, 𝒌 ∈ 𝑲′ ⊂ 𝑲, selected 

from the sequence  {(𝒙𝒌, 𝝈𝒌)}, 𝒌 ∈ 𝑲. According to Lemma 3 the inclusion  

 

𝒙̅ ∈ 𝑫 
 

is defined, i.e. 

 

     𝒇(𝒙̅) ≥ 𝒇∗.                                                                  (19) 

 

Choose a convergence subsequence  {𝒖̅𝒊𝒌
}, 𝒌 ∈ 𝑲′′ ⊂ 𝑲 from the sequence {𝒖̅𝒊𝒌

}, 𝒌 ∈ 𝑲′, and let 𝒖̅ 

be its limit point. Since the set 𝒆𝒑𝒊 (𝒇, 𝑹𝒏) is closed, then  

 

        𝒖̅ ∈ 𝒆𝒑𝒊 (𝒇, 𝑹𝒏).                                                              (20) 

 

In accordance with condition (2) of constructing points 𝜺𝒌 and equations 𝒖𝒊𝒌
= (𝒙𝒌, 𝝈𝒌) which is 

obtained from inequalities  ||𝒖̅𝒊𝒌
− 𝒖𝒊𝒌

|| ≤ 𝜺𝒌, 𝒌 ∈ 𝑲′′, we have  

 

𝒖̅ = (𝒙̅, 𝝈 ̅). 
 

Then in view of (20) the inclusion (𝒙̅, 𝝈̅) ∈ 𝒆𝒑𝒊(𝒇, 𝑹𝒏) is determined, i.e. 

 

     𝒇(𝒙̅) ≤ 𝝈.̅                                                                    (21) 

But according to (11) 𝝈𝒌 ≤ 𝒇∗, 𝒌 ∈ 𝑲′′, and  𝝈̅ ≤ 𝒇∗. Then from inequalities (19), (21) it follows that 

𝒇(𝒙̅) = 𝝈̅ = 𝒇∗. The theorem is proved. 
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