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Abstract. We construct the finite-element approximations for mixed variational inequalities 

with pseudomonotone operators and convex non-differentiable functionals in Sobolev spaces. 

Such variational inequalities arise in the mathematical description of the processes of an 

established filtration. The convergence of these approximations are investigated. 

1.  Introduction  

Mixed variational inequalities with the monotone type operators [1, 2] arise in the mathematical 

description of the processes in the different areas of the science and technique, in particular, in the non 

linear filtration theory [3-7], in the problems of determining the equilibrium of soft shells [8-18], in the 

study of low-temperature plasma [19-24] etc. In this paper as a development of the research described 

in the paper [25] we construct and study the convergence of finite-element approximations for mixed 

variational inequalities of an established filtration with multivalued law. The existence of a 

subsequence of solutions of finite-element problems converging weakly to the solution of the original 

variational inequality is proved. 

2.  Problem statement 

Let   be a bounded domain in mR , 1m  , with a Lipschitz continuous boundary   and let 
2( )g    be the function that determines the filtration law. We assume that 

2 2 2
0 1( ) ( ) ( )g g g       , and  

 2
0 ( ) 0,g      (1) 

( 0  is a limiting gradient), 

 function 2
0 ( )g    is continuous, (2) 

 function 2
0 ( )g    strictly increase for    (3) 

there exist 1 0c  , 2 0c  , 1p  , such that 

 1 2 1
1 0 2( ) ( ) ( )p pc g c           for   , (4) 
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Suppose that 0 1   , 1mes 0  , (1)
0{ ( ) : ( ) 0, }pV W x x      , 

1{ : ( ) 0, }M V x x      ( 1  is the semi-permeable part of the boundary), 

*

* ( 1)
0 : ( )

p
A V V W    , * / ( 1)p p p  , is the operator generated by the form 

 2
0 0, (| | )( , ) ,A u g u u dx 



     , ,u V  (5) 

where ( , )   and | |  are the inner product and norm in mR . 

We also define the functional 1
1 :F V R  by the formula 

| |

2
1 1

0

( ) ( ) (| | ) ,F g d dx dx



      





 

       ( | |) / 2.a a a    

By the solution to the filtration problem of an incompressible fluid with a multi valued filtration 

law with limiting gradient we mean the function u M , which is the solution of the variational 

inequality (see [26-28]) 

 0 1 1, ( ) ( ) , ,A u u F F u f u M           (6) 

It is easy to verify that the set M  is convex and closed. The functional 1F  is convex and Lipschitz 

continuous [29, 30]. If the conditions (1)–(4) hold then the operator 0A  is bounded, monotone, 

hemicontinuous [31] (and hence, pseudomonotone [31]) and coercive [31]. When the above conditions 

on the operator 0A  and the functional 1F  are imposed, problem (6) has at least one solution (see, e.g., 

[1, 31]). 

3.  Construction and investigation of finite element schemes for the filtration problems 

In [25] have been considered the common case, when V is a reflexive Banach space with a uniformly 

convex dual space *V , ,   is a duality relation between V and *V , M is a closed convex set in V, the 

operator *
0 :A V V  is pseudomonotone and coercive on M, i.e., for some ˆ M  the inequality 

 0
ˆ, ;

V V
A           ,lim



 


   is satisfied. Recall that the operator *
0 :A V V  is 

called pseudomonotone [31] if it is bounded and the weak convergence of the sequence  
1k k

u



 in V 

to *u  and the inequality *
0 , 0limsup k k

k

A u u u


   implies that the following relation holds 

* *
0 0, ,liminf k k

k

A u u A u u 


    for all  . Functional 1
1 :F V R  is a convex, continuous 

(but, in general, non-differentiable). Let { }h hV  be a family of spaces, where the parameter h tends to 

zero, such that hV V  for every h. Suppose that there given the linear operators :h hr V V  

(restriction operators from V to hV ). We assume that the family { }h hV  approximates V, that is,  

 
0

0 .lim h V
h

r V  


     (7) 

For each h let us consider a convex closed set h hM V , approximating M, i.e., firstly, for any 

M  an element h hM   can be found, such that 

 
0

0,lim h V
h

 


   (8) 

and, secondly,  

 if h hM  , h   weakly in V for 0h , then M . (9) 

Note that condition (9) is satisfied if hM M  for each h. Indeed, in this case, the family { }h h  

belongs to the weakly closed set M, hence, M . 
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Let us associate problem (6) with a family of approximating problems of finding the elements 

h hu M , such that  

 0 1 1, ( ) ( ) , .h h h h h h h h hA u u F F u f u M           (10) 

The following theorem holds [25]. 

Theorem 1. Let hu  be the solution of problem (10). Then there is a subsequence  
1k k

h



, 0kh   

for k  , such that 
khu  converges weakly in V to a some solution u of problem (6) for k  . 

Moreover, any weak limit point *u  of the family  h h
u  is a solution of (6), and if  

1kh
k

u



 is 

subsequence converging weakly in V to *u  for k  , then  

 * *
0 0 , 0.lim

k kh h
k

A u A u u u


    (11) 

In the construction of finite element schemes we will assume for simplicity that the boundary   

consists of s-dimensional faces ( 1s m  ). 

Let h  be a family (triangulation) of m-dimensional simplexes T, union of which coincides with 

 , and the intersection of two simplexes from h  may be only a s-dimensional face ( 1s m  ), 

sup
h

T
T

h 


 , ( ) sup /
h

T T
T

h  


  where T  is the diameter of the largest ball contained in T and T  is 

the diameter of the smallest ball containing T. We assume that the triangulation h  is regular (see [32, 

33]), i. e., 1̂( )h c  , where the positive constant 1̂c  is independent of h. We now define the finite-

dimensional space hV  approximating V and associated with the triangulation h , as the space of 

continuous functions vanishing at 0  and linear on each simplex hT . It is clear that hV V . 

We denote by hU  the set of all vertices hx  of the simplexes hT , and by hU  the set of all points 

of hU , which belong to int . It is obvious that \ hhU U  . As a basis in hV  we will choose the 

functions ( , )h hx x x  defined on   for any hhx U , such that 
ˆ1, ;

ˆ( , )
ˆ0, .

h h

h h h

h h

x x
x x

x x



 


 Any 

function h hu V  in this case can be represented as a linear combination ( ) ( ) ( , )

hh

h h h h h

x U

u x u x x x



  . 

Finally, we set 0{ : ( ) 0, }h h h hM V x x     .  

We associate problem (6) with an approximating problem, which consists in finding an element 

h hu M  which is the solution of the variational inequality (10) holds. 

Let ( )( ) ( ) ( , )

hh

h h h h

x U

r x x x x  



  , x . The following results (from which it follows that the 

constructed mesh schemes satisfy the conditions (7)–(9) hold. 

Lemma 1. Let V , then h hr V , 
0

0lim h V
h

r 


  . 

Lemma 2. Let M , then h hr M , 
0

0lim h V
h

r 


  , and the property {9} is satisfied.  

The validity of Lemma 1 follows directly from the results of [34], and the validity of Lemma 2 

follows from the definition of the sets M, hM  and Lemma 1. 

We also need the following result [35]. 

Lemma 3. Let the conditions (1)–(4) hold, the sequence ( )
1{ }n

nu V
   converges weakly in V for 

n  to u and the operator *
0 :A V V  generated by the (5) satisfies the relation 
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( ) ( ) *
0 0 , 0.lim

n n

n

A u A u u u


    Then, ( )| ( ) | 0lim

u

n p

n

u u dx






   , where 

{ :| ( ) | }u x u x       is the flow domain.  

We have the following  

Theorem 2. Problem (10) has at least one solution. The family of the solutions to (10) is 

uniformly bounded in h. Any weak limit point u of the family  h h
u  is a solution of {6}, and if 

 
1kh

k
u




 is a subsequence which converges weakly for k   in V to u, then  

 
( )

0lim
k

p

h
Lk

u u


  , (12) 

 | ( ) | 0lim
k

u

p
h

k

u u dx






   . (13) 

Proof. The existence of the solutions to (10) and the fact that any weak limit point u of the family 

 h h
u  is a solution of (10) follow from Theorem 1. Relation (12) follows from the compactness of the 

embedding V in ( )pL   and relation (13) follows from (11) and Lemma 3. 
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