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Abstract. The problem of the gas suspension flow around a porous cylinder in a periodic 

rectangular cell within the models of the Stokes – Darcy and the Navier–Stokes – Brinkman 

using the boundary element and finite volumes method was solved. Streamlines of the carrier 

phase flow and the air and inertia-less particles capture coefficients of at varying porosities of 

cylinder medium and periodic cylinder packing were compared. 

1.  Introduction 

A flow around a porous body is widely encountered in the field of gas suspension filtration. Fully or 

partially porous bodies can act as an aerosol filter element. To evaluate the efficiency of filters with 

porous elements, the flow of gas suspension in an ordered or random packing should be calculated. 

The flow field of the carrier phase can be found with a good accuracy in the approximation of a 

circular or rectangular periodic cell model [1-3]. To the best of our knowledge, there are not enough 

comparisons of accuracy of the predictions of various flow models in the region with mixed 

homogeneous and porous areas. The study of the air flow past a porous cylinder in a rectangular 

periodic cell on the base of two flow models is the aim of the present work. 

2.  The problem statement 

The problem of incompressible gas flow around a porous cylinder in a periodic rectangular cell using 

two mathematical models is solved. The first model describes the fluid flow in a homogeneous field in 

the Stokes approximation and in the porous cylinder domain on the base of the Darcy law. The 

obtained boundary value problem is solved by the boundary element method (BEM). Within the 

second model a combination of the Navier–Stokes and the extended Brinkman equations for uniform 

and porous areas, respectively, is implemented. The solution of the model equations is obtained using 

the CFD code ANSYS/FLUENT by the finite volume method (FVM). Let us describe problem for 

both models. 

2.1.  The Stokes – Darcy model 

Let us consider a two-dimensional flow of an incompressible viscous fluid with suspended particles of 

a porous cylinder with the radius cR  in the periodic rectangular cell. As the scale of a linear size and 

speed select the radius of the cylinder cR  and the average speed U  on the left side of the cell, 
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respectively. In dimensionless coordinates xy  the rectangular periodic cell of the porosity   has the 

height (1 ) 2h     and width 2h . The computational domain   consists of a homogeneous 

area e  of the external flow and a porous medium i  of the internal flow inside the cylinder with the 

radius 1r  : e i   (figure 1). 

The external flow in the area e  is described in the Stokes approximation. In this case, the stream 

function ( , )e x y  of the external flow satisfies the biharmonic equation 

 2 0e   (1) 

and the conditions on the boundaries 
e  and 

i . On the lines AE  and DF  the periodic conditions 

are set 

 ( , ) ( , ), ( , ) ( , ), ( , ) ( , ), ( , ) ( , ),e e e e e e e eh y h y h y h y h y h y h y h y                     (2) 

where e e    is the vorticity (a prime denotes differentiation with respect to the outward normal 

to the boundary). On the top line EF  

 , 0e eh   . (3) 

On the axis-lines AB  and CD  – the symmetry conditions hold 

 0, 0.e e    (4) 

In the porous domain 
i  the flow is described within the Darcy model. The stream function 

( , )i x y  of the fluid flow inside the cylinder satisfies the Laplace equation 

 0i   (5) 

and the symmetry conditions on the line BOC  

 0, 0i i   . (6) 

On the line BC  between the free space and the porous medium (the boundary of the cylinder) the 

conditions are 

  , ,
e

e i e i i e

r r s

u
u u p p S u u

r


 


    


, (7) 

where 
ru , u  are the radial and tangential components of the fluid flow velocity, indexes e and i 

correspond to the external and internal flow, p  is the pressure, /cS R k , k is the permeability of 

the porous medium. The dimensionless slip coefficient 
s  is determined by the viscosity of the carrier 

medium and geometric parameters of the porous medium. The last condition in (7) is a widely known 

Beavers condition [4]. 
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Figure 1. The geometry of the computational domain. 
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2.2.  The Navier–Stokes – Brinkman model 

The flow in the rectangular periodic cell in the approximation of a laminar flow of a viscous 

incompressible fluid is described by the extended Brinkman equations in the porous region and the 

Navier–Stokes equations in the homogeneous region [3, 6, 7]: 

 0,U   (8) 

 
2 ,f

f

U U P U b U
k

 
 



        (9) 

where f  is the porosity of the cylinder medium. The quantity b  equals zero and unity outside and 

inside the cylinder, respectively. The conditions at external boundaries of the rectangular cell 

correspond to the conditions accepted in the previous model: the periodic conditions on the vertical 

boundaries of the cell and the symmetry conditions on the top and bottom boundaries. 

3.  Calculation results 

The boundary value problems (1) – (7) are solved together by BEM [5]. The equations (8) – (9) are 

numerically integrated by FVM using ANSYS/FLUENT code. The numerical studies using the two 

models described were conducted for the same values of the parameters. 

Figure 2 shows the flow streamlines in the periodic cell of 0.96  , calculated by two models for 

the two values of the parameter S. The solid and dashed lines correspond to the streamlines obtained 

by BEM and FVM respectively. In the Stokes – Darcy model S  is assumed to be 1S   in the 

Beavers condition (7). To better visualize the flow in the porous cylinder more fluid flow streamlines 

near the symmetry axis are given. It is seen that the streamlines obtained by two models agree well 

away from the porous cylinder and the agreement is better for larger S . Near and on the porous 

cylinder there is a significant difference between two models. 

 

  
3S   6S   

Figure 2. The fluid flow streamlines in the periodic cell. 

To estimate the inertialess particles coefficient for the flow around the porous cylinder the carrier 

phase capture as a function ( )Q S  should be calculated. The quantity Q  is defined as the ratio of the 

initial ordinate of the limiting streamline passing through the cylinder to its radius and is found as the 

value of stream function of the upper point of the cylinder with the coordinates 0, 1x y  : 

(0,1)Q  . The calculated functions ( )Q S  for the various values   and S  are shown in figure 3. 

With the growth of S (decrease in the permeability of the cylinder) the value Q  decreases 

monotonically. The parameter S  in the Darcy model with the Beavers boundary condition (7) 

significantly affects the value Q  and this effect is larger for less porosity . An approximate model of 

Darcy’s flow in the porous cylinder yields the low values for the considered S  due to neglecting the 

air tangential velocity at the cylinder boundary. 
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In the case of a porous fiber of an aerosol filter the air capture coefficient Q gives the efficiency of 

the capture of inertialess particles [3]. Using the numerically found streamfunction ( , )e x y  we can 

calculate the particle deposition coefficient by the interception phenomena [8]. The contribution of the 

interception to the particles deposition becomes considerable for the particle sizes that are comparable 

with cylinder radius and depends on the ratio p cr R  , where pr  is the particle radius. The total 

efficiency E  of capture of inertialess particles can be found as ( ) (0,1 )E     . On the base of the 

analytical Kuwabara model the formula was obtained in [3] 

 
   1 3

1 2 3

1 2 3

(0,1 ) (1 ) (1 ) (1 ) (1 ) ,

0.5 0.25 , Ku 0.5 0.5 ln(1 ), 0.25 ,

E C a a a

a a a

         

        

      

   
 (10) 

 
1

2Ku 2(1 )C S


   , 2Ku 0.5ln 0.75 0.25       , 1   . 

The dependencies ( )E   for the two values of S  at 0.96   and 1S   are given in figure 4. In [3] it 

was shown that the value of the parameter 3S   for real porous bodies. The curve ( )E   is higher than 

the interception efficiency of a solid cylinder. The difference is the air capture coefficient Q. In 

general, the Darcy model gives low values of the particle capture rate as compared with the model of 

Brinkman. The curves ( )E   obtained by BEM are in a better agreement with an analytical 

formula (10). 
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Figure 3. The coefficient of air capture ( )Q S . 
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Figure. 4. The dependence ( )E   at S=3(a), 6(b). 
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