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Abstract. The article deals with the optimal control problem with the parabolic equation as 

state problem. There are point-wise constraints on the state and control functions. The 

objective functional involves the observation given in the domain at each moment. The 

conditions for convergence Udzawa’s type iterative method are given. The parareal method to 

inverse preconditioner is given. The results of calculations are presented. 

1.  Introduction 

The numerical solution of parabolic control problems requires multiple solving the direct and adjoint 

equations (cf., e.g., [1]). The corresponding simulations can be too expensive and lead to the difficulty 

in obtaining "real-time solutions". To overcome this difficulty the parallel algorithms for 

multiprocessor workstations are usually constructed. A common way to construct a parallel algorithm 

is based on the decomposition of a spatial domain in elliptic problems as well as in evolutionary 

problems. Another approach consists in splitting the global problem into a series of independent 

evolutionary problems on smaller time intervals. It is so-called parareal algorithm, proposed in [2], [3] 

and widely used for solving different scientific and applied problems (cf., e.g., [4]-[9] and the 

bibliographies therein). 

In this article we use the results of [10], [11] to construct a preconditioned Udzawa-type iterative 

method for mesh approximation of a state constrained parabolic optimal control problem. For the 

implementation of this method we propose a parareal algorithm of inverting the preconditioning 

matrix. 

2.  Initial problem, mesh approximation 

Let Ω = (0,1)
n 

, n ≥ 1, with the boundary ∂Ω, QT = Ω × (0,T] and ΣT = ∂Ω × (0,T]. A parabolic initial-

boundary value problem 

yt  −  y = u in QT ,  y = 0 on ΣT ,  y = 0 for t = 0, x ∈ Ω                              (1)  

is a state problem. For u ∈ L2(QT) there exists a unique solution of problem (1) from the space  

W (QT) = {y ∈ L2(0,T;H0
1
(Ω)), yt L2(QT )} ([12], p.370). We define the sets of constraints for control 

u and state y: 

.),(}),(:)({},),(:)({ maxminmax2 TTadTad QtxytxyyQWyYutxuQLuU   
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Above umax>0 and −∞ ≤ ymin < 0 < ymax ≤ +∞. Let objective function be defined by the equality 
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with a given observation function yd ∈ L2(QT ). Optimal control problem reads as follows: 
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It is a minimization problem of quadratic functional J(y, u) on a closed, bounded and convex set  

K ≠  , so, it has a unique solution (cf. [1]). 

Below we suppose for the simplicity that the function yd is continuous. We construct a finite 

difference approximation of problem (3) on the uniform grid  x  in TQ , where x  is a grid with 

a step h while };,...,1,0,{ TMMjjt j    . Let hV  be the space of mesh functions defined 

on the grid x  vanishing in the boundary nodes x  and hjj Vtxyy  ),( be a mesh function on a 

time level   jt j . Later we use the same notations both for mesh functions and the vectors of 

their nodal values. By xN we denote the dimension of hV  and by 
x

  the Euclidian norm of the vectors 

of nodal values in this space.  

Let A be well-known matrix of mesh Laplace operator on the grid x  with homogeneous Dirichlet 

boundary conditions. Approximate state problem (1) using backward Euler finite difference method: 
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The approximation of the objective function (2) on the grid  x  is the sum 
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. We scaled it to derive the following mesh objective function: 
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The sets of the constraints for the mesh control and state functions we define as follows 
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Now, mesh optimal control problem reads as follows:  
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Problem (6) is a minimization problem of a quadratic function on a compact set, so, it has a unique 

solution. 

Later we consider problem (6) with very big number of time levels M  and use a parareal algorithm 

for solving (4). Namely, let t  be a new time step 
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and };,...,1,0,{ TtMMjtjt ttjt   . Further for the simplicity we suppose that 

t m  with 1m . 

Following the ideas and terminology of the article [13], we define as a coarse propagator backward 

Euler finite difference scheme on the coarse grid t ,  while a fine propagator - backward Euler finite 

difference scheme on the fine grid  . 

3.  Iterative method for the mesh problem 

Let N = NxMτ be the dimension of the mesh functions of the variables x and t, NNRE  be unit matrix 

and NNRL  be defined by the equality 
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Let also ψ and φ be the indicator functions of the sets h
adY  and h

adU , respectively, while ∂ψ and ∂φ  

be their subdifferentials. Mesh optimal control problem (5) can be rewritten as 

 

)}.()(),({min uyuyJ
uLy

 


 

Lagrange function for this problem is defined by the equality 

 

),,()()(),(),,( uLyuyuyJuy    

 

where (∙,∙) is Euclidian inner product in NR .  
Due to theory of saddle point problems ([14], p.169) a saddle point of this Lagrange function 

satisfies the following system: 
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With the notations z = (y, u)
T
 , f = (yd, 0, 0)

T
 , Ψ(z) = (ψ(y), φ(u))

T
  and 
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problem (7) reads as 
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Using the results of [15] we can prove the existence of a solution to (6) and convergence of a 

preconditioned Udzawa method 
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with preconditioning matrix D = D
T
 > 0 and iterative parameter ρ which satisfy the inequality 
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In [16] the convergence result has been proved for method (9) with the preconditioner D = LL
T
 and 

iterative parameter ρ ∈ (0,1). The detailed form of the corresponding iterative method reads as follows: 
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Implementation of every step in (11) consists of solving the inclusions to find u
k+1

 and y
k+1

, and 

solving a system of linear equations with the matrix LL
T
.  Since the operators ∂φ and ∂ψ have diagonal 

forms, vectors u
k+1

 and y
k+1 

can be found component-wise by the explicit formulae. So, the most time 

consuming part of the algorithm is solution of the system with the matrix LL
T
. In the following section 

we describe a parareal algorithm of inverting matrix LL
T
. 

4.  Parareal preconditioner 

To find the solution of the third equation in system (10) we have to invert the matrix 
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and its transposed L
T
. Denote by 11   kk uLyg . Then we get from (11) the equation gLv  , where  



 kk
TLv




1

. 

We use the following variant of parareal method for finding a solution v of the equation gLv  .                

Let kv~ be calculated using backward Euler finite difference scheme on a coarse grid 

};,...,1,0,{ TtMMjtjt ttjt    with .1,  mmt    

Then at each time subinterval 1,...,1,0],)1(,[  tMjtjtj  we use the values of )(~~
j

kk
j tvv    

as initial values to find a solution kv  in the points mjtjttjttjt m ,...,1,0,)1(,...,, 10    

of the fine grid: 
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After that we define a correction vector kkk vv ~ in the points of coarse grid and find a new value 
kv~  via following sequential procedure for tjt  : 
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The main feature of (12) is the possibility of its parallel implementation. Namely, we can use tM   

processors for searching kv  in tM   subintervals in parallel manner. 

Denoting  


 kk

w



1

 we get vzLT  . The implementation of this equation differs from the 

algorithm above in that all calculations start from the last time-point t=T and continue backward for 

.1,...,1,   tt MMj  Finally, .1 zkk    

The stability of the parareal algorithm is proved in the article [17]. In addition, the results of [18] 

show us that suitably damping coarse schemes ensure unconditional stability of the parareal algorithm. 

 

5. Numerical experiments 
The parareal algorithm is realized with the following data. For simplicity we choose one-dimensional 

case, when n = 1, and there are no restrictions on functions y and u. The final time moment is T = 1, 

mesh size h = 0.05. Time step of the fine grid t = h, the step of the coarse grid τ = h
2
. The iterative 

parameter ρ = 0.005, the observation function yd(x, t) = e
t
 sin(πx). The calculation stopping criterion is 

number of iterations in Udzawa method. 

 
 

 

Figure 1. Shape of the state function y. 
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Figure 2. Residual 
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