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Abstract. In the article a method of investigation of elastic-plastic deformation for solids under 

complex loading is presents. Resolving equation based on the principle of virtual power. For 

simulation of plastic deformation taken the associated flow law with updating the stressed 

state. Numerical implementation is based on using 8-node finite element discretization. 

Numerical calculations show the suitability of the proposed methodology. 

1.  Introduction 

There are many publications, where solutions of nonlinear problems of a solid mechanic are discussed, 

for example [10-13].In this paper a numerical algorithm of the investigation of stress-strain state of the 

elastic–plastic solids with large deformations is described. 

2.  Kinematics 

The deformation gradient tensor F, the left Cauchy–Green tensor T B F F , the corresponding spatial 

gradient of velocity   -1
h F F  and the rate of deformation sym( )d h  are used for describing of 

kinematics of a continuum. The basic relationships are described in [1, 6-9]. 

3.  Constitutive equations 

The constitutive equations are obtained using the free energy function   that plays the role of an 

elastic potential and yield function. The Cauchy stress tensor is defined as [1, 5] 
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where det( )J  F  is a changing of volume. For isotropic material the free energy   is defined as 

 1 2 3, ,I I I  B B B , where iI B  is the corresponding invariants of tensor B . 

After linearization (1) the rate of Cauchy stress is defined as 
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Or  

 ,Tr  ΣΣ Λ d  (2) 
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where 
1

Tr I     T

dΣ Σ h Σ Σ h Σ  is the Truesdell stress rate. Therefore, constitutive model can be 

defined as linear relation between an objective derivative of Cauchy stress tensor and rate of 

deformation. 

The theory of flow is used for describing plastic deformation [2-5]. The total deformation rate is 

represented as a sum of elastic and plastic parts: e p d d d [2-5]. For the plastic deformation rate 

must hold association flow rule: 

 ,p 
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where  is the consistency parameter, Φ is a yield function. 

4.  Integration algorithm of the flow rules 

For the solution problem of a plastic flow the general return method is used [5, 14-16]. The solution at 

time kt  is known. The stress at time 1 1k k kt t t    is defined from the initial conditions at time kt . 

The trial stress is defined as 

 1 1 .k k k   Σ Σ Σ  (4) 

The plastic flow 1k   can be computed from equation  
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The solution is obtained by solving a nonlinear system of equations (5) with linearized Newton 

scheme using (2)–(4). 

5.  Variation formulation 

The research algorithm is based on an Update Lagrange formulation. The principle of virtual work in 

terms of the virtual velocity is used [1-5]: 

 : ,

S

d d dS
 

     Σ δd f δv p δv  

where  is the current volume, S  is the surface on which the force p  is applied, f  is the body force 

vector, v  is a velocity vector. After linearization the system of linear equations is obtained, where the 

unknown is the increment of displacement in the current state 1k
Δ u . For solving general system of 

equations the arc-length method is applied [5]. The current state is defined as 1 1k k k  R R u . Then 

the trial stress is calculated by (4). And if )Φ( 0k+1
Σ  then the Cauchy stress 1 1k k Σ Σ , else the 

radial return method with an iterative refinement of the current mode of deformation is applied [5]. 

6.  Numerical example 

As an example the potential of elastic deformation is considered:  
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here  ,   are Lame parameters. The von Mises yield criterion with isotropic hardening is used:

( ) 0,i       where 1.5 :i dev dev  Σ Σ , ( ) ( )(1 )T Th e       

      is the 

hardening function. The material data for isotropic elasticity and the von Mises yield condition are 

given as follows: E=206.9 GPa, 0.29,  0.715   GPa, 0.450T   GPа, 0.129h  , 16.93  .  

The numerical implementation is based on the finite element method. An 8-node brick element is 

used [2-5, 9]. 

6.1.  Necking of a circular bar. The necking of a circular bar is an example widely investigated in the 

literature; see e.g. [14] or [15]. To initialize the necking process radius in the center is reduced 

by 1.8 %. Figure 1 displays the final deformed structure and the equivalent plastic strain, which 

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012030 doi:10.1088/1757-899X/158/1/012030

2



 

 

 

 

 

 

concentrates in the necking zone. The results are in very good agreement with the computational 

reference solutions of [14] and [15]. 

 

 
Figure 1. Left: Equivalent plastic strain at final structure. 

Right: Computational results of applied force F [kN] versus axial elongation w [mm]. 

6.2.  Conical shell. In the second example of isotropic elastoplasticity a conical shell subjecting to a 

constant ring load is considered [9–10]. Figure 2 displays equivalent plastic strain for the several 

deformed structure. 

 

 
Figure 2. Equivalent plastic strain on deformed structures at different stages of the punching process. 

6.3.  Drawing of a Circular Blank. Two different materials are considered for orthotropic yielding. For 

material A the shear stresses dominate in the yield criterion, for material B the normal stresses are 

predominant in yielding. As expected the plastic strains concentrate for material A at a 45º angle in the 

(x, y)-plane and for material B along the x-and y-axes, see Figure 3. 

 

 
Figure 3. Left: Equivalent plastic strain on deformed structures (material A). 

Right: Equivalent plastic strain on deformed structures (material B). 
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7.  Conclusions 

In the paper an additive formulation of the elastic-plastic deformation presents and finite element 

implementation is considered. The physical conditions obtained using the free energy function. The 

linearized equations derived from the principle of virtual work for the current state. Mises yield 

criterion with isotropic hardening is used. The effectiveness of present research algorithm of large 

elastic-plastic deformation demonstrate resolved problems, results are compared with the results of 

other authors. 
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