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Abstract. The boundary value problem for the quasistationary magnetic approximation of the 

time-harmonic Maxwell equations in inhomogeneous media is studied. The considered 

problem is reduced to the variational problem of determining vector magnetic and scalar 

electric potentials. The special gauges are discussed, that generalize the Coulomb and Lorenz 

gauges and allow to formulate the problems of the independent definitions of the vector 

magnetic potential. The correctness of the problems are established under general conditions 

on the coefficients. The relation between solutions of the problems with different gauges is 

studied. The equivalence of the problems for potentials to the original boundary value problem 

is proved. 

1.  Introduction  

The solution of many actual technological problems leads to theoretical and numerical study of 

problems for quasi-stationary electromagnetic fields in physically heterogeneous media [1]. Quasi-

stationary magnetic or low-frequency approximation of the Maxwell's equations used in the design of 

electromagnetic devices in metallurgical industry and power transformers, for remote sensing, in 

solving problems of magnetic levitation and in advanced medicine [1]–[3]. 

The essential  stage in the development and justification of efficient numerical methods for solving 

applied problems is the study questions of the correctness of their various mathematical formulations. 

Electromagnetic processes in theoretical and numerical researches are traditionally described  in terms 

of magnetic or electric fields [4]-[6] either in terms of potentials – vector electrical and scalar 

magnetic (the T  formulations) [7]-[9] or vector magnetic and scalar electrical (the A  

formulations) [10]-[16]. 

The application of potentials always presupposes the choosing of certain gauges that ensure the 

uniqueness of the solution of the problem. In particular, for the description of stationary and 

quasistationary electromagnetic fields the classical Coulomb gauge 0div A  and Lorenz gauge 

0div  A  are used [11]-[14], which allow to uniquely determine the vector magnetic and scalar 

electric potentials.  

In the case of inhomogeneous media the classic Coulomb and Lorenz gauges do not lead to the 

decoupled problem for the electric and magnetic potentials [13], [14], however this decoupling plays 

an important role in the algorithms development for the numerical solution. In this regard, various 

modifications of the gauges are considered. In [14], [15] the possibility of applying the modified 
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Lorenz gauge, that allows to separate the problems of determining the magnetic and electric potentials, 

is discussed. 

In the present paper the theoretical issues are investigated related to the use of the modified gauges, 

which generalize the Coulomb and Lorenz gauges for the case of inhomogeneous media and decouple 

the problem for the vector magnetic and scalar electric potentials. We consider the time - harmonic 

Maxwell equations in the low frequency approximation in physical domains filled with conductive and 

non-conductive material. The respective topics for conductors are considered for the stationary 

problems in [17], [18], for time-dependent problems – in [19]. 

For the considered class of problems this paper provides a full justification of the suitability of 

these gauges, namely, we prove the well-posedness of the problems and their equivalence to the 

original boundary value problem. The relation between solutions of the problems under different 

gauges is examined. In the case of homogeneous media, this relation is similar to the ratio between the 

solutions for the system of Stokes equations for incompressible and weakly compressible liquid [20]. 
The study of the properties of the boundary value problems is based on the inequalities which 

combine the scalar product of vector fields and norms of their curl and divergence. These inequalities 

generalize the estimates for scalar products of vector fields obtained in [17], [21] for the case of 

domains homeomorphic to a ball. 

2.  The boundary value problem 

The time-harmonic Maxwell equations in the quasistationary magnetic approximation can be 

presented in the form [1] 

   xx JH curl ,                                                                             (1) 

  0div xB ,                                                                                (2) 

   xx BE icurl  ,                                                                     (3) 

   xx Ddiv ,                                                                           (4) 

where 3
Rx ; H , B , E , D , 3: CJ  and 1: C  are unknown functions. 

In linear media the following constitutive relations are valid: 

HB  , ED  , ext
JEJ  ,                                                      (5) 

where   is a magnetic permeability,   is a permittivity,   is a electrical conductivity, ext
J  is an 

exterior current density. 

We suppose 0 . In case 0 let H , B , E , D , J ,   are real valued functions and thus (1)-

(4) is the stationary system of the Maxwell equations. 

It is assumed in this paper, that   is an open bounded domain, homeomorphic to a ball, with a 

Lipschitz boundary  . Let  xν  is the unit normal vector in x . For function 3: Cu  we 

denote by u , u  the normal and tangent components of u  on  .  

The system (1)–(5) is considered with the boundary condition  

  0xH , x .                                                                 (6) 

We assume, the domain consists from the conductor С  and the isolator CI  \ . Let С is 

an open bounded homeomorphic to a boll domain with Lipschitz boundary  , С , so 

 I . The unit normal vectors in x  to С  and I are denoted by  xСν  and  xIν  

respectively,     0 xx IС νν . For functions 3: Cu  and 1: Cu  we denote by Сu , Сu  their 

restrictions on C , by Iu , Iu  their restrictions on I . 

11th International Conference on "Mesh methods for boundary-value problems and applications" IOP Publishing
IOP Conf. Series: Materials Science and Engineering 158 (2016) 012046 doi:10.1088/1757-899X/158/1/012046

2



 

 

 

 

 

 

The   and   are self-ajoint linear operators from   3

2 L  into   3

2 L , satisfying the following 

conditions: 

  2

,22,2

2

,21 ,


 uuuu  ,   2

,22,2

2

,21 ,


 uuuu  , 

 x   is symmetric 33  matrix of measurable functions on  , satisfying the conditions  

  0xij , 3,2,1, ji , for almost all Ix  , 

   2

2

2

1 ,   x  for almost all Cx   and for all 3
R , 

where i , i , i , ( 2,1i ) are given positive numbers, by 



,2

 and    ,2,  the norm and the scalar 

product in   3

2 L  are denoted.  

3: Cext
J  is a square integrable function, such that 

0div ext
IJ ,     0xext

I 
J , x . 

The generalized solutions of the problems will be considered, that is all equalities have to be 

satisfied in the sense of distributions and boundary conditions have to be satisfied in the sense of the 

trace theory [22]. 

The following Hilbert spaces with the respective scalar products are defined [22]: 

        2

3

2 div:div; LLH uu ,      0div:div;
3

2  uu LK , 

    


  xxdiv ddivdivd, , vuvuvu , 

        3

2

3

2 curl:curl;  LLH uu ,      0curl:curl;
3

2  uu LK , 

     


  xxcurl dcurlcurld, , vuvuvu . 

 div;0H ,  curl;0H  denote the closures of the set of test vector-functions in  div;H  and 

 curl;H  respectively,       div;div;div; 00 HKK . 

The solution of the problem (1)–(6) is the set of  functions   curl;0HH ,   div;KB , 

  div;0KJ ,   curl;HE ,   3

2  LD ,   1H , satisfying (1), (3)–(5). 

To uniquely identify function E  in the whole domain  , we suppose that unknown functions E , 

  satisfy the conditions 

0 I ,     0xE , x ,                                               (7) 

where  IL  20  is a given function. 

In case 0  the problem also may be regarded under conditions  

0 I ,   0xE , x ,   Q
I




1,E ,                               (8) 

Q   is a given constant. 

3. Problems for the vector potential 

Relations (2), (3) allow to introduce the vector magnetic potential A  and the scalar electric potential 

  as new unknown variables by the formulas [23] 
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AB curl , AE  igrad                                                      (9) 

In this case, the system (1)–(5) is reduced to one equation 

ext
JAA    gradcurlcurli 1 .                                         (10) 

Equation (10) is provided by the boundary condition corresponding to (6): 

    0curl1  x A , x .                                                       (11) 

The solution of the problem (10), (11) is the functions   curl;HA ,   1H , satisfying (10) in 

the sense of the distribution and (11) in the sense of the trace theory, that is   curl;curl 0
1 HA . 

Suppose that A ,   is the solution of (10), (11). Then from (10) we obtain for all   curl;Hv  

       






 xxxx ext

CC

ddgraddcurlcurldi 1
vJvvAvA  .              (12) 

The solution of the problem (10), (11) is obviously  not unique. The following two types of gauges 

are discussed: 

0div СA ,     0x
C

A , x , 0div IA ,   0xA , x ,                  (13) 

and 

CC A div ,     0x
C

A , x , 0div IA ,   0xA , x ,        (14) 

where 0  is an arbitrary constant. 

We define the Gilbert spaces 

           xxHHW IICCC ,0,0div,div;:curl;,; 0 
 uuuu , 

       




C

xxxW ddivdivdcurlcurld, vuvuvuvu  , 

    0div:,;,;  CCC WV uu  ,      ,,, curlV vuvu . 

Using (12) we obtain that  the problem (10), (11), (13) is reduced  to the following problem: to find 

a function   ,; CV A  such that for all   ,; CV v  

     






 xxx ext

C

ddcurlcurldi 1
vJvAvA  ,                       (15) 

the problem (10), (11), (14) is reduced  to the problem of determining   ,; CW A  such that for 

all   ,; CW v  

       






 xxxx ext

CC

dddivdivdcurlcurldi 1
vJvAvAvA  .      (16) 

Theorem 1. The problems (15) and (16) have unique solutions. 

The next theorem establishes the relation between the solutions of the problems under different 

gauges. 

Theorem 2. Let A  and A  are the solutions of (15) and (16) respectively. Then AA curlcurl  , 

AA   in   ,; CW   as   and the following estimation is valid 
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


,2

1 ext

W
C JAA  , 

where the constant 0C  depends only on C  and  . 

The proof of the theorems is based on the following inequalities which generalize the obtained in 

[18], [22] estimates for scalar products of vector fields in a star-shape domain.  

Theorem 3. Let 3
R  is an open bounded Lipschitz domain, homeomorphic to a ball. There 

exists a positive constant  C , which depends only on  , such that the inequality 

    
 
,2,2,2,2,2,2,2 divcurlcurldiv, vuvuvuvu C  

holds for any   curl;0Hu ,   div;Hv  and for any   curl;Hu ,   div;0Hv . 

4. The correctness of application the gauges 

The using of potentials requires that H , E , which defined by (9), satisfy the Maxwell equations. 

Thus the correctness of application the gauges implies the equivalence the problems in terms of 

potentials and the origin boundary value problem. 

The conditions (7) in terms of potentials means 

  0gradidiv   IA ,     0gradi  x A , x .                   (17) 

The conditions (8) for 0  means 

0graddiv  I ,   constx , x ,   Q
I




1,grad  .             (18) 

The following statements are valid.  

Theorem 4. Let   ,; CW A  is the solution of the problem (15) or (16). Then there is a 

function   1H , unique up to an additive constant, such that A ,   is the solution of the problem 

(10), (11), (17). In case 0  there is a unique function   1
0H  such that A ,   is the solution of 

the problem (10), (11), (18). 

Theorem 5. Let   ,; CW A  is the solution of the problem (16). Then there is a unique 

function   1H , such that A ,   is the solution of the problem (10), (11), (17) and 

CC A div . In case 0  there is a unique function   1H , such that A ,   is the solution 

of the problem (10), (11), (18) and CC A div . 

From theorems 4, 5 the next theorem follows 

Theorem 6. The problems (1)-(7)  and (1)-(6), (8) (at 0 ) have unique solutions. Moreover the 

relations (9) are valid, where A  is the solution of (15) or (16). 
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