
 

 

 

 

 

 

Numerical simulation of liquid jet impact on a rigid wall 

A A Aganin and T S Guseva 

Institute of Mechanics and Engineering, Kazan Science Center, Russian Academy of 

Sciences, 420111 Kazan, Russian Federation 

E-mail: ts.guseva@mail.ru 

Abstract. Basic points of a numerical technique for computing high-speed liquid jet impact on 

a rigid wall are presented. In the technique the flows of the liquid and the surrounding gas are 

governed by the equations of gas dynamics in the density, velocity, and pressure, which are 

integrated by the CIP-CUP method on dynamically adaptive grids without explicitly tracking 

the gas-liquid interface. The efficiency of the technique is demonstrated by the results of 

computing the problems of impact of the liquid cone and the liquid wedge on a wall in the 

mode with the shockwave touching the wall by its edge. Numerical solutions of these problems 

are compared with the analytical solution of the problem of impact of the plane liquid flow on 

a wall. Applicability of the technique to the problems of the high-speed liquid jet impact on a 

wall is illustrated by the results of computing a problem of impact of a cylindrical liquid jet 

with the hemispherical end on a wall covered by a layer of the same liquid. 

1.  Introduction 

The impact of high-speed liquid jets (or drops) on a wall is of considerable interest to applications as it 

can lead to the wall damages. Such problems can occur, for example, with aircrafts flying in a rain, 

with operating steam turbines [1, 2]. High-speed microjets directed to a wall can arise on the surface 

of cavitation bubbles at their non-spherical collapse near the wall. The impact of such jets is 

considered to be one possible cause of destruction of the surfaces of bodies operating in the conditions 

of cavitation [3, 4]. 

Important features of the high-speed jet impact on a wall are shockwaves which can arise in the 

liquid and the surrounding gas, the strong deformations of the liquid-gas interface. These features need 

to be allowed for while choosing a mathematical model as well as a numerical method, and they were 

taken into account in realizing the numerical technique of the present work. 

2.  Basic points of the numerical technique 

The numerical technique is based on the approach without explicit separation of the interface. Similar 

to [5], an identifier-function  is used to identify a fluid:  = 1 in the liquid and  = 0 in the gas. In a 

small vicinity of the gas-liquid interface the identifier  is continuous and monotonically changing 

from 0 to 1. The identifier is governed by the advection equation 

 0t  u , (1) 

where u is the advection velocity. 

Dynamics of the liquid and the gas is computed by the CIP-CUP method [6]. It is based on 

equations of motion of a compressible medium in primitive variables (density, velocity, pressure), 
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which allows one to perform calculation without explicit separation of the interface [7]. Without 

allowing for the effects of viscosity and heat conductivity those equations can be written in the form 

 t   f u f G  (2) 

where f = (ρ, u, p)
T
, G = (–ρ∙u, –ρ

1
p, –ρCS

2
∙u)

T
,  is the density, p is the pressure, 

CS = CS1+(1  ) CS2 is the sound speed, CSi = [i(p+Bi)/]
1/2

, i = 1 corresponds to the liquid, i = 2 to 

the gas, 1, B1 are the constants of the Tait equation of the liquid state, 2  B2  , is the 

isentropic exponent of gas. 

System (2) is numerically integrated by splitting into the advection and non-advection parts. 
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Semi-Lagrangian method CIP (Constrained Interpolation Profile) [5] is applied to compute the 

group of advection equations (3). The solution of the advection equation for a function f at a grid point 

x at a time moment t
n+1 

= t
n
 + t

n
 can be approximately written as f (xut

n
) where the argument is a 

departure point meaning the location of the "Lagrangian particle" which in time interval t
 n
 will arrive 

at the grid point x. The value of the function f at the departure point is determined by CIP-interpolation 

using known values of f and its spatial derivatives at the grid points at the moment t
n
. 

Non-advection part (4) is reduced to the following pressure equation 
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u
, 

which is integrated by the well-known SOR method. Then u
n+1

 and 
n+1

 are calculated. In solving 

problems with strong shockwaves the CIP-CUP method is used in combination with the artificial 

viscosity. 

Calculations are carried out with the use of dynamically adaptive grids [8]. In the two-dimensional 

case, the grid is a set of points located on parallel straight lines. At each time step a new grid adapted 

to the solution and independent of the old grid is constructed. In doing so, the number and the relative 

position of the grid lines and the grid points on those lines can change. 

In creating a grid, a monitoring function M (x, y, t) defined as 

    2 2 1/2( , y, ) 1 x y xx yyM x t f f f f      

is first calculated. Here f is some parameter of the solution, ,  are some positive coefficients. The 

lines and the points of the grid are condensed in the zones with large values of the monitoring function 

and are rarefied where the values of the function are small. In the finite-difference approximations to 

the derivatives, the necessary values of the parameters at the points of the stencil are determined by 

CIP interpolation [8]. 

3.  Impact of a liquid cone and a liquid wedge on a wall 

To estimate the efficiency of a numerical technique of computing the jet impact on a solid surface it is 

possible to use a model problem of a liquid cone impact on a wall. For this purpose the case of impact 

of a liquid blunt cone on a plane wall is considered in the present paper (Fig. 1a). The slope of the 

cone surface to the wall is sufficiently small so that a shockwave with the edge attached to the wall is 

formed in the liquid. The circular area r  RL (RL = V t ctg θ, V is the impact velocity, θ is the angle of 

the slope of the cone surface, r is the distance to the axis of symmetry) of contact of the liquid and the 

wall quickly expands. The sideway spreading of the liquid on the wall does not arise. 
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Figure 1. The schematic of the impact of a liquid blunt cone (a) and the plane semi-

infinite liquid flux with the same slope of the boundary (b) on the horizontal fixed wall. 

 

Following [9], we estimate the value of the pressure of the compressed liquid in the vicinity of the 

shockwave edge (r  RL) in the problem of the liquid cone impact (Fig. 1a) by the value of the 

pressure of the everywhere-equally compressed liquid behind the shockwave in the problem of impact 

of a plane semi-infinite liquid flux with the same liquid velocity and the same slope of the flux 

boundary (Fig. 1b). In the latter problem, the pressure of the compressed liquid behind the shockwave 

is determined by 

 
2

0 0 2
sin( ) sin( ) cos( ) tg

sin
L

V
p p            


, (5) 

where the shockwave slope angle  is found from the equation 

 3 2 2 2 2

1 1 1

1 1
tg ( ) 1 1 tg ( ) 1 tg( ) ctg 0

2 2
M M M

      
                   

   
. 

Here Г is the constant of the Tait equation of the liquid state, 1 ( sin )M V C  , p0, L0, C are the 

pressure, the density, and the sound speed in the undisturbed liquid. 

Some differences between the values of the pressure of the compressed liquid in the vicinity of the 

shockwave edge in the former problem and that behind the shockwave in the latter problem can be 

caused by the influence of the axial symmetry. To estimate this influence the numerical solution of the 

similar plane problem of the liquid wedge impact is utilized. 

 

 
Figure 2. The gas-liquid interface, the fields of the pressure and the profiles of 

the pressure on the wall in the half of the axial section at impact of the liquid 

cone (a, b) and the liquid wedge (c, d),  = 0.06, V = 250 m/s (pwh = 5 kbar). 
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Typical numerical results on impact of the liquid cone and the liquid wedge on the wall in case of 

small values of  are illustrated in Fig. 2. The liquid (1 = 7.15, B1 = 3072 bar) is assumed to be 

surrounded by a gas (=1.4). At the initial moment  = 1,  = 10
3
 kg/m

3
 in the liquid,  = 0, 

 = 1 kg/m
3
 in the gas, and p = 1 bar everywhere. In Fig. 2 the pressure p is referred to the 

waterhammer pressure pwh, which can be estimated approximately as pwh = L0DV where D is the 

shockwave velocity, D  C + 2V for water [9]. One can see in Fig. 2 that the main features of the 

impact (the geometry of the shockwave front, the distribution and the maximum and minimum levels 

of the compressed liquid pressure) are almost infependent of the axial symmetry. At the same time, in 

the presence of the axial symmetry the distribution of the liquid pressure on the wall is everywhere 

nonuniform with the clear maximum at the imact area edge r = RL, while in the absence of the axial 

symmetry this distibution has, near the imact area edge x = RL, quite a large plateau at the level of the 

maximum pressure. 

 

 
Figure 3. Dependences of the liquid pressure on the wall on the slope angle  in the cases of 

impact by (i) the plane semi-infinite liquid flux (curve without symbols, calculated by (5)), 

(ii) the liquid cone (curves with ), and (iii) the liquid wedge (curves with ×). The dashed 

(solid) curves with symbols correspond to the centers r = 0, x = 0 (edges r  RL, x  RL) of the 

loaded area. In the case (i) the liquid pressure behind the shockwave is everywhere the same. 

 

According to Fig. 3, for the small slope angles   0.07 the pressure values, computed by the 

technique of the present work in the case of impact by the liquid wedge, in the vicinity of the 

shockwave edge x = RL are in very good agreement with those, calculated by (5), behind the 

shockwave in the case of impact by the plane semi-infinite liquid flux. The influence of the axial 

symmetry manifests itself in only slightly reducing the wall pressure both in the center and at the edge  

of the loaded area. 

4.  Impact of a jet with hemispherical end on a liquid layer on a wall 

Impact of an axisymmetric liquid (1 = 7.15, B1 = 3072 bar) jet (surrounded by the air,  = 1.4) with 

the hemispherical end on a rigid wall covered by a thin uniform layer of the same liquid is considered 

(Fig. 4a). Initially  = 1,  = 10
3
 kg/m

3
 in the liquid,  = 0,  = 1 kg/m

3
, in the gas, and p = 1 bar 

everywhere. The jet velocity and radius are V = 350 m/s and R = 10 m, the thickness of the liquid 

layer is equal to 0.04 R. 
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Figure 4. Impact of a liquid jet on a thin liquid layer on a wall: the gas-liquid interface, the fields of 

pressure in the half of the axial section in the vicinity of the jet end, pwh = 7.7 kbar. 

 

Liquid jet impact on a liquid layer on a wall results in appearance of two shockwaves, the pressure 

at the place of impact being approximately equal to half of the waterhammer pressure. One of the 

shockwaves propagates up the jet, while the other first moves in the layer to the wall and then reflects 

from it (Fig. 4a). Interaction of the second shockwave with the wall is divided into the stages of 

regular (Fig. 4a) and irregular (Fig. 4b) reflection. At the stage of regular reflection and in the 

beginning of the stage of irregular reflection the maximum pressure on the wall is attained at the edge 

of the reflection area. The levels of that maximum pressure are comparable with the waterhammer 

pressure. At the stage of irregular reflection the fronts of the oncoming and reflected shockwaves 

merge to produce the resultant shockwave in the vicinity of the wall. The resultant shockwave begins 

to propagate in the liquid layer and interact with its surface. The interaction leads to creation of a 

rarefaction wave which soon acts on the wall (Fig. 4c). A thin ring-like liquid splash arises in the 

space between the jet and the layer (Fig. 4c). 

5.  Conclusion 

Main points of a numerical technique for computing problems of the high-speed liquid jet impact on a 

rigid wall are presented. In the technique, the liquid and gas flows are governed by the gas dynamics 

equations in the density, velocity and pressure. Their numerical integration is carried out by the CIP-

CUP method with application of dynamically adaptive grids, the gas-liquid interface is calculated 

without explicit tracking. 

To estimate the efficiency of the technique problems of impact on a wall of a liquid cone and a 

liquid wedge in the mode with the shockwave attached to the wall by their edges are considered. The 

pressure values computed by the presented technique are found to be in the vicinity of the edge of the 

shockwave attached to the wall in good agreement with the analytically determined pressure of the 

compressed liquid in a similar problem of impact on the pressure wall of a flat semi-infinite flux. The 

influence of the axial symmetry of the liquid cone impact on the liquid pressure in the vicinity of the 

shockwave edge is shown to be small. 

Applicability of the presented technique to numerically simulating the high-speed liquid jet impact 

on a wall is illustrated by computing impact of a cylindrical liquid jet with the hemispherical end on a 

wall covered by a layer of the same liquid. 
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