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Abstract. Algorithmic approach of hypothesis testing of identity of 

distribution laws of random values is offered. Its basis is made by technique of 

creation of confidence borders for a probability density. 

 

1. Introduction 

Problems of hypothesis testing about random distributions are one of the main in the theory 

of mathematical statistics. For their decision the Pearson's criterion which does not depend on 

random distributions and their dimension is widely used [1]. However the formation 

technique of this criterion contains difficult formalizable stage of splitting a range of values of 

random values into intervals. This problem is absent in criterion of Kolmogorov-Smirnov 

which is used at a hypothesis testing about distributions of one-dimensional random values 

[2]. The technique based on replacement of a problem of hypothesis testing about random 

distributions by a problem of hypothesis testing about equality of probabilities of an error of 

pattern recognition to threshold value [3, 4]. 

Problems of statistical hypotheses testing of random distributions are intimately bound to 

creation of confidence regions for their probability densities or cumulative distribution 

functions [1]. 

In this thesis the algorithmic approach of hypothesis testing of random distributions using 

confidence borders of their probability densities is offered and investigated. The basis of 

approach is made by a regression assessment of a probability density. 

 

2. Regression assessment of the probability density and its property 

Let there is a selection  n,i,xV i 1  from n  independent values of a one-dimensional 

random value x  with unknown probability density  xp . 

For estimation of a probability density  xp  in the conditions of selections of large volume 

we will use a technique of "compression" of input statistical data V  [5]. Let's break definition 

range  xp  into N  not crossed intervals 2  long and we will create sets of random values 

N,j,X j 1 . As characteristics jX  we will accept frequency jP  hits of a random value x  

in the j -th interval and its center jz . On the basis of the received information we will define 
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a data array   N,j,/Py,zV jjj 121   jz  injected intervals 

and values of estimates of probability densities jy  corresponding to them. 

For a quantity choice N  intervals of sampling of a range of values of a random value it is 

possible to use recommendations of publications [6-10]. 

As an assessment of a required probability density  xp  we will accept statistics 
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in which nuclear functions  u  obey H : 
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Values of diffuseness coefficients of nuclear functions  Nc  in expression (1) decrease 

with body height N . 

Asymptotic properties of statistics (1) are defined by the following statement. 

Theorem. Let: 1)  xp  is limited and continuous with all the derivatives to the second 

order inclusive; 2) nuclear functions  u  obey H ; 3) at N , c  and 0 ; 0
c

 , 

and nc . Then the regression assessment of a probability density possesses properties of 

an asymptotic unbiasedness and convergence in the mean squared: 

Asymptotic unbiasedness 
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Convergence in the mean squared 
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Here the following designations are accepted: 
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  xp 1 ,   xp 2  are the first and flexon of probability density  xp ; M  - is the sign of 

expected value. 

 

3. Creation of confidence borders for the probability density 

The assessment of a probability density (1) allows to construct confidence borders for 

 xp  on the basis of confidence estimation of probabilities jP  of events jXx , N,j 1 . 

Top 
j

h
P  and bottom

j
d

P  borders of an interval assessment of probability jP  of event 

jXx  with a confidence coefficient   are defined by expressions 
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where 21 u  - quantile of level 21   of a reference normal distribution. Values 21 u  are 

determined by tables of quantiles of a normal distribution at  1 . 

Let's make computing experiment and determine by  N,j,P j 1  according to (2), (3), 

values N,j,P
j

h
1  and N,j,P

j
d

1 . 

On this basis let’s carry out synthesis top and bottom confidence borders 
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for probability density  xp . 

Let’s define optimum coefficients of a diffuseness of nuclear functions in expressions (4), 

(5) with use of a method of "the sliding examination". For example, for an upper bound (4) 

choice of optimum diffuseness coefficient hc  of nuclear functions is carried out as a result of 

expression minimization 

TIAA2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 155 (2016) 012035 doi:10.1088/1757-899X/155/1/012035

3



 

















N

i

i
h

i
h zp

~~P

1

2

2
. 

Here 
2

i
h

P
 - us value of the upper confidence bound  xp  within the i  -th interval of 

sampling of a random value x , and 

  
















 


N

ij
j h

ji
j

h
h

i
h

c

zz
P

c
zp

~~

1

1
  

represents its assessment on this interval. 

 

4. Technique of hypothesis testing of identity of distribution laws of random values 

There are two independent selections  11 1 n,i,xV i   22 1 n,i,xV i   the 

one-dimensional random values taken from universes 1X , 2X , which are characterized by 

unknown probability densities  xp1 ,  xp2 . It is necessary to confirm or disprove a 

hypothesis 0H  of identity of their distribution laws. 

Let t , 21,t   confidence regions for probability densities  xpt , 21,t   at the given 

confidence coefficient  . 

Then realization of a hypothesis 0H  is defined by the following rule 
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For implementation of this rule according to the technique offered above let construct for 

probability densities  xp1 ,  xp2  confidence borders 
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where  tP
j

h
,  tP

j
d

 - interval estimates  tP j  of an event 
j

tXx  with a confidence 

coefficient  ; tN  - quantity of not crossed intervals of areas tX ; 
t
h

c , 
t
d

c  - diffuseness 

coefficients of nuclear functions in statisticians  xp~ t
h

,  xp~ t
d

. 

Let's designate through a 


tV  - a range of a random value of an t
j Vx  , tN,j 1  getting 

to a confidence region of a probability density of a  xpt , 21,t   at the given confidence 

coefficient  . Formation of a set 


tV  is carried out on the basis of the following decisive rule 
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It is easy to notice that the set 
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This rule is based on replacement of operations with confidence regions t , 21,t   set by 

sets 


tV , 21,t   on check of ratios between their borders  xp~ t
h
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5. Acknowledgment 

The structure of a regression assessment of a probability density allows to solve a problem 

of confidence estimation of a probability density on its basis. The idea of the offered approach 

consists in decomposition of input statistical data and the subsequent analysis of probabilistic 

characteristics of the received sets of random values. On this basis, using a nonparametric 

assessment of a regression curve, synthesis of confidence borders of a probability density is 

carried out. The area sizes determined by confidence borders depend on quantity of intervals 

of sampling of random values, their probabilistic characteristics and volume of input 

statistical data. 

If the confidence region of a probability density includes a confidence region of other 

compared density, they are identical. Otherwise the hypothesis of identity of distribution laws 

of random values is rejected. 

The offered approach opens possibility of generalization of the received results on a 

hypothesis testing about distributions of many-dimensional random values. 
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