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Abstract. Hybrid systems of pattern recognition in the conditions of large 

volumes of the training selections and not stationarity of classification objects 

are offered. Asymptotic properties of their decision function are investigated. 

 

1. Introduction 

Perspective nature of sharing of parametrical and local methods of approximation was for 

the first time noted in work [1]. Its idea was used at restitution of stochastic dependences in 

the conditions of existence of partial data on their look [2, 3]. The developed models were 

called hybrid. This concept is natural and is based on procedure of correction of initial 

parametrical approximation. The next analogs of the used approach are semi-parametrical 

models of stochastic dependences [4]. 

The offered technique was developed at the solution of the two-alternate problem of 

pattern recognition in the conditions of existence of partial data on a type of the dividing 

surface equation [5, 6]. 

In this work the technique of synthesis of hybrid systems of pattern recognition in the 

conditions of large volumes of the training selections and not stationarity of objects of 

classification is offered. The basis of a technique is made by serial procedure of correction of 

decision functions. 

 

2. Synthesis of hybrid system of pattern recognition 

Let there is a training selection   n,i,x,xV ii 1   of large volume n , where )x( i  - 

instructions on situation ix  belonging to one of two classes 1 , 2 . The objects of 

classification which are characterized by a feature set  k,v,xx v 1 , can be nonstationary. 

These conditions are characteristic, for example, at data processing of remote sensing. Let's 

apply the principles of hybrid model operation at synthesis of system of pattern recognition. 

The idea of the offered approach consists in realization of the following actions: 

1. Let's carry out decomposition of the initial training selection V  on N  

parts   j
ii

j Ii,x,xV   , N,j 1 . The basis for realization of this operation is formation 

of selections jV  according to their accessory to various time frames of overseeing by signs of 

the classified objects. 

2. By data 1V  construct the decisive rule 
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where the nonparametric assessment of the equation of the dividing surface is 
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1n  - quantity of elements of set 1I . 

Here values are  ix =1, when 1ix  and  ix =-1, when 2ix . Nuclear functions 

 vu  in nonparametric assessment  xf 1
12  obey H : positive, the symmetric and the 

normalized [7]. Diffuseness coefficients vc  of nuclear functions decrease with body height 

1n . 

In this case the decisive rule (1) corresponds to criterion of a maximum of a posterior 

probability. 

3. By results of computing experiment to create data   212 Ii,xq,xV ii  . They reflect 

difference of "decisions"  ix1  of rule   xm1
12  (1) from "instructions"  ix  from the 

training selection 1V . Here values of the correcting function are 
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In the presence of a pattern recognition error the correcting function accepts value inverse 

on a sign of a nonparametric assessment of the equation of the dividing surface  xf 1
12  also 

exceeds it on a small  . 

4. To estimate the correcting function  xq1  on selection 2V  on the basis of nonparametric 

regression 
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5. Then the intermediate hybrid algorithm of pattern recognition will register as 
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where 

     .xqxfxf 1
1
12
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The choice of best values   k,v ,ncv 12   is carried out from a condition of a minimum of a 

statistical assessment of probability of an error of pattern recognition in the mode of "the 

sliding examination". 

6. Generally serial correction procedure of the dividing surface equation has an appearance 

as 
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Nonparametric assessment of the correcting function 
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is formed according to computing experiment 
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Here  i
t x1  - is "solution" of algorithm   xm t 1

12
  in conditions ix , and  ix  - are 

"instructions" from selection   t
ii

t Ii,x,xV   . 

On the basis of decision functions  xf t
12

, N,t 2  serial synthesis of algorithms of pattern 

recognition is carried out 
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Expression (2) is a nonparametric assessment of decision function 
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For simplification of the subsequent transformations we will consider that 
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In expression (4) 
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Hereinafter the infinite limits are passed. 

 

3. Asymptotic properties of hybrid decision function 

Let's consider asymptotic properties of one-dimensional hybrid model (2) type at a known 

collateral probability density  xp  of distribution x  in classes 21  , . Let the algorithm of 

classification (3) correspond to criterion of maximum likelihood. The correcting function is 

optimum in sense of a minimum of a mean squared deviation between  xqt
0

1  and  xqt 1 . In 

these conditions nonparametric estimates of the equation of the dividing surface  xf t 1
12
  and 

the correcting function  xq
t
0

1
 in (4) are presented in the form 
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Here  xp t
j

1  - is nonparametric assessment of a probability density of distribution x  in 

class j . 

Let  xf t 1
12
 ,  xpt  are limited and continuous with all the derivatives to the second order 

inclusive. We will designate these conditions through 1tG . 

Theorem. Let: 1) the equation of the dividing surface  xf t 1
12
  and a collateral probability 

density  xpt  of distribution x  in classes obey 1tG ; 2) nuclear functions   0u  in 

nonparametric statistics  xqt 1 ,  xf t 1
12
  obey H ; 3) sequences   0 tt ncc , 
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Then the hybrid model  xf t
12  possesses properties of an asymptotic unbiasedness and 

solvency of rather decision function  xf t
12 . 

Proof. 
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where M  - is the sign of expected value. 

By definition of expected value, if      
i
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Let's carry out replacement of variables in integrals of the received expression 
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 40 tc  are designated the composed order trifles 4
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From the analysis of expression (7) when performing conditions 0tc , 0    

tn  property of asymptotic not shift of the correcting function  xqt 1  follows. 

Asymptotic expression first composed in (6) is determined by analogy 
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After simple transformations we will receive 
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In this expression 
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From condition 01 tc  at 11 t,n , 12 t,n , property of asymptotic not shift of 

nonparametric statistics  xf t 1
12
  follows. 

Taking into account expression (6) and the received results (7), (8) asymptotic not shift of 

hybrid decision function )x(f t
12  follows. 

2) Let’s investigate asymptotic properties of a mean square deviation 
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Let’s consider expression 
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Carrying out similar transformations, we will calculate 
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Substituting expressions (7), (11) in (10), at tn  we will receive  
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When performing these transformations composed trifles  tn10 ,  tt nc0 ,   tt cn0 , 

 40 tc  weren't considered. 

Let’s define asymptotic expression for a mean square deviation 
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           
 2

1111

21
12

1
12

xpxpMxfxfM t,t,
tt  

               21212121211112 xpxpМxpxpxpxpM t,t,t,t,t,t,   . (12) 

Asymptotic expression for a mean square deviation  xp t,j 1  from  xp t,j 1 , 21,j   is 

received in [8] 

      
    

4

22
1

4
1

11

2
2

11

 


 

dxxpc

cn

duu
~xpxpM

t,jt

tt,j
t,jt,j


. 

It is easy to show that 

 

                  xpxpc~xpxpxpxpM
t,t,tt,t,t,t,

2
12

2
11

4
112121111   . 

 

Then at rather great values of 1t,jn , 21,j   asymptotic expression for a mean square 

deviation (12) is presented in the form 

 

        
11211

1211
2

21
12

1
12









tt,t,

t,t,tt

cnn

nnduu
~xfxfM


.                         (13) 

The composed trifles  4
10 tc  are excluded. Substituting expression (11), (13) in (9) at 

11 t,n , 12 t,n , tn , we will receive 

        









11211

1211
2

2

1212
tt,t,

t,t,tt

cnn

nnduu
~xfxfM


 

    

 
    

 
      220

1

20
120

1

220
1 











 

xpxq
xp

cxq
xq

xpcn

duuxq
tt

t

tt
t

ttt

t . 

 

In the course of transformations the composed trifles  4
10 tc ,  20 tc  weren't considered. 

From conditions 0tc , 
 

0
11211

1211








tt,t,

t,t,

cnn

nn
, tt cn , 0  at tn , 

11 t,n , 12 t,n , convergence in mean square statistics  xf t
12

 follows. The last 

statement and asymptotic not shift of hybrid model  xf t
12

 defines property of its solvency. 

 

4. Acknowledgment 

Hybrid systems provide the effective solution of problems of pattern recognition in the 

conditions of non-uniform data of large volume. Sources of the non-uniform training selection 

are: not stationarity of objects of research, existence of the completed admissions of data and 

their polytypic character. The structure of hybrid system of pattern recognition in a two-

alternative problem of classification is based on consecutive procedure of correction of the 

equation of the dividing surface. At each its stage the intermediate hybrid model of the 
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equation of the dividing surface is specified by the correcting function. Estimation of the 

correcting function is carried out by results of computing experiment with the intermediate 

decisive rule and use of one of uniform parts of the training selection. As its model 

nonparametric regression is used. The hybrid equation of the dividing surface possesses 

properties of asymptotic convergence. 

The type of the correcting function and feature of the training selection generate family of 

hybrid systems of pattern recognition . Use of consecutive procedure of formation of structure 

of hybrid system allows to organize the accounting of partial aprioristic data on a type of the 

equation of the dividing surface. Further development of a technique of synthesis of hybrid 

system of pattern recognition is connected with its generalization on a multialternative 

problem of classification and the analysis of its properties in a multidimensional case. 

This work was carried out as part of assignment No. 2.914.2014/K of the Ministry of 

Education and Science of the Russian Federation. 
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