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Abstract. The selection of suitable parameters, by experimental or intuitive processes for 

snap-through actuation of a bimetallic actuator at a prescribed temperature is an extremely 

time-consuming task.  This paper describes a new methodology for the optimization of a 

discrete action thermo-bimetallic actuator with a tongue.  This methodology makes it possible 

to solve the optimization task with higher efficiency.  The requirement is to find optimal 

parameters values so that the actuator will make a snap-through at a given temperature.  The 

constrained optimization task was performed using an evolutional algorithm and surrogate 

modelling and this was coded in Matlab.  Functional relationships between the criteria and 

parameters were not set explicitly, but they were calculated using finite element method, each 

simulation of which was performed in Abaqus.  

 

1.  Introduction 

Discrete action actuators are used in industry.  In particular they can be used as thermo-sensitive 

electrical switches for overload protection of electric circuits, for important elements temperature 

control and regulation, in optical components, as a manipulator for object transportation in micro-

systems. 

Dome plate bimetallic actuators are well known [1].  They change curvature direction, making a 

snap-through at a critical temperature [2-4].  Despite the ease of fabrication, they have several 

disadvantages.  For example, their temperature of a snap-through is unstable and the component 

experiences high stresses, in some cases exceeding the elasticity limit.  In the latter case, the value of 

the critical temperature changes over as a result of the evolution of the zone of plastic deformations.  

As a result the service life of such actuators, relays and switches is limited.  Another disadvantage is 

the emergence of cracks on the actuator surface after multiple switches, leading to actuator failures. 

Another well-known type of actuators is that of actuators with a tongue [5].  Their effective 

displacement is higher compared with the dome actuators, so they can ensure required contact forces 

and avoid bounce.  Required contact force ensuring makes it possible to transform the mechanical 

displacement of the actuator into the proper performance of the following part of the micro-electro-

mechanical system (MEMS).  Due to the displacement paucity, contacts can “bounce” upon closure 

before coming to a full rest and providing unbroken contact, which is inadmissible in electric circuits. 
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Bimetallic actuator parameter optimisation using current state-of the-art optimisation and finite 

element modelling (FEM) analysis software (such as ANSYS, Abaqus, iSight) is an extremely time-

consuming task, as it requires multiple meshing after geometrical design parameter variations.  The 

formal use of these programs for the analysis of bimetallic actuators deformation processes without 

correct design strategy can often be unsuccessful (especially in the case of deformation with a snap-

through). 

The snap-through behaviour and large deflections of thin-walled shells has been studied by many 

authors [6-12].  Other recent research papers [13-14] describe computational algorithms for non-linear 

deformation.  Optimization plays a key role in the design of actuators [15-18], however, most MEMS 

design optimization (exploration) methods depend either on analytical / behavioural models or on time 

consuming numerical simulations.  Surrogate modelling techniques have been introduced to integrate 

generality and efficiency [19]. 

In the present paper, a technique is presented for determining geometry parameters for a discrete 

action micro-actuator, operating under snap-through.  The actuator consists of two regions: 

hemispherical shell with a central hole and tongue configuration (Figure 1).  The actuator is comprised 

of two layers.  The parameters are shown in figure 1.  It is required to find optimal parameters values 

so that the actuator will make a snap-through at a given temperature.  This constrained optimization 

task was performed using an evolutional algorithm and surrogate modelling [19] and implemented in 

MATLAB R2013a [20].  Functional relationships between the criteria and the parameters are not set 

explicitly, but they are calculated using a finite element method [21], each simulation of which is 

performed in Abaqus finite element software [22]. 

 

 

 

Figure 1. Actuator - geometry and parameters for the optimization task. 

 

 

2.  The method adopted 

The hemi-spherical thin-walled micro-actuator is designed to perform mechanical switching.  Let us 

suppose that its deflection is required to take a given value 𝑑∗ when the critical temperature 𝑇∗ is 

applied.  The elastic characteristic of the micro-actuator which includes a snap-through mechanism 

and the deformed shape of the actuator are shown schematically in figure 2. 

The shell curvature changes after applying temperature.  This part of the process is illustrated by 

the DA part of the curve.  The shell instantly changes the direction of the deflection at the point A (the 

upper critical point) – the snap-through at point A.  Then the shell continues its deformation from the 

point B of the stable part of the elastic characteristic.  The deflection of the shell decreases if the 

pressure decreases (BC) until the point C (lower critical point) and the CD snap-through. 

The initial data for the research is given in table 1.  The required outcome of the optimisation 

process is the selection of values 𝑙tongue, 𝑏tongue, 𝑏, subject to the value of critical temperature 𝑇∗ being 
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equal to the customer’s requirements.  The acceptable ranges of variation of these parameters are also 

given.  The functional relationships between the criteria and parameters are not set explicitly, but are 

calculated using Finite Elements in Abaqus as described below. 

 

 

 

Figure 2. Schematic of the discrete elastic response and deformed shape of the actuator. 

 

 

The shell is modelled using shell elements.  The material of the shell is linearly elastic.  The shell is 

simply-supported around the edge and is loaded by temperature.  The analysis is performed using the 

parameter continuation algorithm arc-length method for a problem with large displacements.  In this 

method the length of the arc [23] along the elastic characteristic curve is used as a parameter in the 

parameter continuation method, rather than displacement in the displacement - controlled mode or 

temperature in the temperature-- controlled mode. This makes it possible to overcome computational 

stability difficulties.  The evolutional algorithm and surrogate modelling method implemented in 

Matlab are used for the solution of the optimization problem [21]. 

There is one objective function, specified as 

 

𝐹1 = |𝑇 −  𝑇∗|  (1) 

 

 

Table 1.  Problem specification data 

Parameter Value 

Length of the tongue 𝑙tongue 1.5 − 4 × 10−3 m 

Width of the tongue 𝑏tongue 1.3 − 2 × 10−3 m 

Hole parameter 𝑏 1.2 − 2 × 10−3 m 

Desired temperature 𝑇∗ 40℃ 

  Layer 1 Layer 2 

Shell thickness ℎ 1 × 10−4 m 1 × 10−4 m 

Young’s modulus 𝐸 190 × 109 Pa 150 × 109 Pa 

Poisson’s ratio 𝜈 0.3 0.3 
Thermal expansion coefficient 𝛼 18 × 10−6, 1/℃ 1 × 10−6, 1/℃ 

 

 

At each iteration, new values for the variables were substituted into the Abaqus file, and the finite 

element analysis was repeated.  The calculated values for the critical temperature, 𝑇, were extracted 

from the Abaqus results database. The Optimizer continues to test different parameter values until the 
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value of 𝑇 matches that of 𝑇∗ to within the tolerance requirements.  Penalty functions were used to 

implement the constrained optimization.  

 

 

 

Figure 3. Mathematical and finite element models of the actuator 

 

 

3.  Evolutional algorithm and surrogate modelling 

The evolutionary computation algorithm imitates the biological mechanisms of evolution to 

approximate the global extremum problem [15].  The main feature of the evolutionary algorithm (EA) 

is the use of individual populations that are processed by a set of operators (crossover, mutation, 

selection) and are evaluated using the fitness function. The goal of the operators is to find candidates 

with higher fitness function values [16].  The fitness function shows "how well" a candidate succeeded 

and determines the probability of its survival.  The process of solving the problem consists of 

generating new populations and testing them: the candidate with the higher fitness function has a 

higher chance of being saved and being used as the "parent" when creating the next candidate 

solutions.  First, populations (each population consists of individual specimens – actuators, which are 

characterized by a vector of parameters) are randomly generated.  Then, the procedure of crossover is 

carried out: different candidates shares their binary strings parts to create new child populations 

(binary genetic algorithm [24]).  The purpose of this step is the exchange of information by parents.  If 

the useful information is combined, the functional adaptation of the new candidate populations is more 

likely to have high value.  The next step is the mutation.  The purpose of mutation is to present new 

information to the population to provide a global search.  New populations are generated after the 

mutation stage.  Candidates with a higher fitness function receive a greater likelihood of promoting 

successful generations on the selection stage.  The best solution is displayed, if the stopping criterion 

is satisfied, i.e. the maximum number of populations is reached, otherwise, a new iteration starts. 

Surrogate models are used to replace models which require time-consuming calculations? For 

example the computationally demanding FEM snap-through analysis.  The purpose of the surrogate 

model is to significantly increase the efficiency of the optimization by replacing time-consuming 

computational steps with simpler models which are sufficiently representative the true values.  In this 

study, the critical temperature for new parameter values is determined using a surrogate model of the 

surface of equilibrium states without extra running the finite-element program. 

4.  Results  

The optimal parameters of the actuator are shown in the table 2.  The elastic characteristic for the 

optimal geometry is shown in figure 4.  The average time cost is 3.6 hours (wall clock time) which is 

five times quicker than optimization task solution using a standard differential evolution algorithm.   

5.  Discussion 

Surrogate model-based methods are used in actuator design optimization to combine generality and 

efficiency.  An initial random sampling is first carried out.  The black-box surrogated model is 

prepared to approximate the performance of the actuator using the sampled design variables as the 
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input and the critical temperature via numerical simulations as the output.  It is used to replace 

computationally expensive numerical simulation model in the optimization process.  The developed 

algorithm made it possible to achieve the results comparable with methods which directly embed 

numerical simulations to a standard evolutionary algorithm for actuator optimization. 

 

 
 

Table 2. Optimal parameters 

Parameter Value 

𝑙tongue 3.87 × 10−3 m 

𝑏tongue 1.39 × 10−3 m 

𝑏 1.28 × 10−3 m 

 

Figure 4. Elastic characteristic of an actuator 

with optimized geometry 

 

 

 

 

The surrogate modelling method is Gaussian Process, providing an approximation model for the 

MEMS performance using existing training data points.  For off-line surrogate model-based methods, 

prediction results are used as results based on real simulation in the optimisation process.  Thus, its 

accuracy needs to be verified, or wrong convergence may happen; however, the surrogate model here 

is an on-line model.  Promising candidates using prescreening methods are selected and are then 

verified by finite element analysis.  In other words, the surrogate model only serves for looking for 

"promising" solutions, but the prediction result itself is not used as the performance.  The surrogate 

model assisted evolutional algorithm used here is a state-of-the-art method [25]. 

The efficiency of the optimization process by using surrogate modelling was improved by up to 

five times.  Actuator optimization problems with several design variables and without any initial 

solutions were solved. 

6.  Conclusion 

A technique for determining geometric parameters for a discrete action actuator with a tongue, to 

translate a prescribed critical temperature into deflection has been described.  The three geometry 

variables considered were the tongue length, tongue width and the hole parameter.  The mechanical 

analysis was performed using Finite Element Analysis to obtain the temperature of a snap-through.  

The optimization process was performed using an evolutional algorithm and surrogate modelling in 

Matlab program.  The proposed methodology followed has been demonstrated to be effective, a 

number of opportunities for methods development have been identified, and these will form the basis 

for further more challenging design optimization studies.  Compared with other state-of-the-art 

methods, the proposed technique showed clear advantages in efficiency and accuracy. 
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