

Design and implementation of a vision-based hovering and

feature tracking algorithm for a quadrotor

Y H Lee1 and J S Chahl1,2

 1Division of Information Technology and Engineering, The School of Engineering,

University of South Australia, Australia
 2Joint & Operations Analysis Division, Defence Science and Technology Group,

Australia

*javaan.chahl@unisa.edu.au

Abstract. This paper demonstrates an approach to the vision-based control of the unmanned

quadrotors for hover and object tracking. The algorithms used the Speed Up Robust Features

(SURF) algorithm to detect objects. The pose of the object in the image was then calculated in

order to pass the pose information to the flight controller. Finally, the flight controller steered

the quadrotor to approach the object based on the calculated pose data. The above processes

was run using standard onboard resources found in the 3DR Solo quadrotor in an embedded

computing environment. The obtained results showed that the algorithm behaved well during

its missions, tracking and hovering, although there were significant latencies due to low CPU

performance of the onboard image processing system.

1. Introduction

Significant number of research programs on the vision-based control for Unmanned Aerial Vehicles

(UAVs) are ongoing actively as an alternative sensor to GPS [1]. In fact, in case of ground vehicles,

many vision-based control algorithms have already been proposed so far. However, when it comes to

UAVs, specific additional challenges should be considered such as rigid body objects moving in 3D,

dynamic effects and external perturbations, and relatively poor quality of video sequences filmed from

the vibrating movement common to UAVs [2]. Simultaneous localization and mapping (SLAM) is one

of the more popular technologies for position control for UAVs [1]. One of the popular approaches to

the visual simultaneous localization and mapping (VSLAM) algorithm was introduced by Klein and

Murray [3]. Their approach splits the task into two threads: one for tracking and the other for mapping.

The advantage of this separation is that by running both threads at different rates (the tracking thread

runs faster than the mapping thread), the tracking thread can update the position more quickly while

the mapping thread can employ a slower but more powerful technique. In addition, since the mapping

algorithm does not process all frames, the image processing work can have more resource allocated,

especially when the UAV moves slowly or hovers [4]. When VSLAM uses a single camera, it cannot

provide the scale factor that is a crucial parameter for calculating absolute velocity and position in 3D

of the vehicle. In order to acquire this scale factor, several methods were proposed such as employing

air pressure sensor or online multi rate extended kalman filter (EKF) based on inertial sensors [5].

Another vision-based control area that is attracting many research teams is the object tracking field.

A research team in University of Toronto has carried out vision-based hovering and object tracking,

and tested several related algorithm such as optical flow, colour-based image processing, kalman filter

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012015 doi:10.1088/1757-899X/152/1/012015

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

tracking [6]. Their work achieved quite desirable results despite some limitations such as the camera

was fixed on the ground staring upward to film the quad-rotor and the image processing tasks were

done on ground station. Other interesting research in object tracking is a quad-rotor UAV platform that

tracks a moving target on the ground based on visual information from a camera [7]. An interesting

point is that, in case of loss of track of the moving target, the quad-rotor increases its altitude so as to

get wider field of view. However, a limitation was that their algorithm was only verified for a moving

object with purely translational motion. Similar UAV vision-based on-board object tracking research

has also been conducted in [8]. The research employed a low-cost on-board monocular vision system

and designed a closed-loop object tracking controller. With colour detect vision algorithm and closed-

loop controller, the object tracking system showed a stable result though it has some limitations such

as stationary object, light condition and restricted background around the object.

 The aim of this work is to enable hovering and object tracking for UAVs using vision data from a

monocular camera. For this goal, the vision system should possess following capabilities: detecting the

target object, identifying the current pose (x,y)T and also orientation ɵ relative to the target object, and

approaching the object and holding the position around the object. For the first and second capabilities,

image processing algorithms provided by OpenCV libraries were employed such as SURF [9] and

moments [10] based image processing. For the third capability to steer the UAV, the ‘dronekit’ python

library for 3DR Solo was employed. Robust detect algorithms, filtering and compensating corrupted

position data due to external environment such as wind, precise control algorithm to steer the UAVs

were key challenges for this project.

2. Methodology

2.1. Quadrotor platform

3DRobotics has introduced the Solo quadrotor, which is a Linux based drone and shown in Figure 1.

Even though its main design purpose is a high-tech toy for entertainment, it can be a solid and well-

integrated platform for drone-related research due to its standard development environment – Linux,

OpenCV, dronekit. The hardware specification of the Solo quadrotor is listed in Table 1.

Figure 1. Front picture of the solo

with GoPro camera

Table 1. The solo hardware specification

Component Specification

Propeller 24cm diameter, 144cm pitch

Weight 1.5kg

Dimension 25cm tall, 46cm motor to motor

Flight battery Lithium poly 5200mAh

Max Payload 420g

Autopilot Pixhawk 2

Software APM copter

Solo’s control is carried out by two embedded boards: Pixhawk 2 and IMX6, as shown in Figure 2.

The Pixhawk 2 is responsible for low-level control like motor, sensors and flight control. Meanwhile,

the IMX6 performs the role of high-level controller such as video streaming and communication with

the remote controller. All control messages from the IMX6 are passed to the Pixhawk 2 in the form of

mavlink protocol commands. Specification for both Pixhawk 2 and IMX6 is provided in Table 2.

2.2. Image processing

Several image processing algorithms were employed in this study for object detection, pose estimation

and tracking. Speed Up Robust Features (SURF) algorithm was used for target detection, then after

applying image processing, the pose information of the target relative to the quadrotor was estimated.

OpenCV libraries provided a standard framework and architecture for the above image processing

algorithms that the software used to implement the algorithms.

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012015 doi:10.1088/1757-899X/152/1/012015

2

Figure 2. Image of Pixhawk 2 and IMX6

Table 2. Specification for embedded boards in the solo

 CPU Memory OS

Pixhawk2

32 bit ARM

Cortex M4

168MHz

256KB NuttX RTOS

IMX6

32bit ARM

Cortex A9

1GHz

512MB

Yocto

embedded

Linux

SURF algorithm extracts some keypoints and descriptions from an image, and then using them to

detect the same scene or object from other images [9]. It uses an intermediate image representation

known as the integral image. Given a input image I and point (x , 𝑦), integral image IƩ is calculated by

the sum of the values between the point and the origin as in Equation 1.

 IƩ(x, y) = ∑∑I(x, y)

j≤y

j=0

i≤x

i=0

 (1)

The SURF detector is based on the determinant of the Hessian matrix [9]. The Hessian matrix H is

the matrix of partial derivatives of function, f as given in Equation 2.

 H(f(x, y)) =

[

∂2f

∂x2

∂2f

∂x ∂y

∂2f

∂x ∂y

∂2f

∂y2]

 σ (2)

The determinant of this matrix is calculated by Equation 3.

 det(𝐻) =
∂2f

∂x2

∂2f

∂y2
− (

∂2f

∂x ∂y
)(

∂2f

∂x ∂y
) (3)

This determinant value is used to classify the maxima and minima of the function. Then, calculate the

Hessian matrix H, as function of both space X = (x, y) and scale σ as shown in Equation 4.

 H(X, σ) = [
Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)
] (4)

where Lxx(X, σ) refers to the convolution of the second order Gaussian derivatives
∂2g(σ)

∂x2 with the

image at point X = (x, y) and similarly for Lxy and Lyy [11].

In order to achieve invariance to image orientation, SURF uses wavelet responses in horizontal and

vertical directions for neighbourhood of size 6s, and applies Gaussian weights. The feature descriptors,

the wavelet responses in the horizontal and vertical directions are used. The algorithm constructs a

square window around the interest point. Then the window is divided into 4x4 pixel sub-regions. The

horizontal and vertical wavelet sample points are collected in the form of Equation 5.

 νsubregion= [Ʃdx, Ʃdy,Ʃ|dx|,Ʃ|dy|] (5)

Using the binary image resulting from the above image processing, the pose of the target object can be

calculated. First, the spatial moments of intensity distribution for binary images are calculated using

Equation 6.

 Mi,j = ∑(I(x, y)xiyj)

x,y

 (6)

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012015 doi:10.1088/1757-899X/152/1/012015

3

Then, central moments are used to calculate the total area of the intensity distribution:

 μi,j= ∑ (I(x,y)(x− xc)
i(y−yc)

j)x,y
 (7)

The coordinate (xc,yc), which is the centre of the target object, can be calculated as in Equation 8 [12].

 xc =
M1,0

M0,0
 , yc =

M0,1

M0,0
 (8)

It is highly possible that taking pictures from constantly moving quadrotor will also generate noisy

information. Thus some filtering algorithms were needed to compensate for this noise and determine

the true value. In OpenCV, the Kalman filter algorithm can be used for this purpose. In addition, it can

be used to predict future position in case of temporary loss. The Kalman filter estimates the state of a

process by using a form of feedback controller. Firstly, the filter estimates the states and then obtains

feedback in the form of measurements. Equations for the Kalman filter can be categorized into two

groups [13]: the time update equations that are responsible for obtaining the a priori estimates for the

next time step -> predictor and also the measurement update equations that are responsible for the

feedback -> corrector.

Suppose X is a discrete-time process, Z is a measurement, and W and V represent the process and

measurement noise, respectively. The state of X and measurement Z equations can be expressed as

follow [14]:

 Xk+1 = AXk + Wk (9)

 Zk = HXk + Vk (10)

Then, the Kalman filter estimates the state X of time k and corrects the prediction using measurement

Z using the following equations [13] :

Time update (prediction):

 X̂k
̅

= AX̂k−1 + Buk−1 (11)

 Pk
̅

= APk−1A
T + Q (12)

Measurement update (correction):

 Kk = Pk HT(HPk HT + R)-1 (13)

 X̂k = X̂k
̅

+ Kk(Zk − HX̂k
̅
) (14)

 Pk = (I − KKH)Pk (15)

3. Implementation

For this project, two processes were developed that both processes run on the IMX6 board embedded

in the Solo – the flight controller and the vision controller. In the case of the flight controller, it is a

python script using dronekit python library. Therefore, there is no need to be concerned about platform

dependency. However, when it comes to vision controller, it was developed using C++ language and

using OpenCV C++ libraries. Cross development environment should be set up as following: build

OpenCV libraries for the arm platform and set-up cross development environment to build the vision

controller to make it run on the arm platform. Firstly, the complier should be the same one that has

been used to build the root-file-system on the IMX6 board. To find this, the following command was

run with a binary file in current root-file-system in the solo.

$ readelf –l ‘binary file name’ | grep interpreter

As a result of above command, it was found that ‘arm-linux-gnueabihf-gcc-4.8’ was employed to build

the root-file-system in the Solo.

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012015 doi:10.1088/1757-899X/152/1/012015

4

To install OpenCV libraries into the IMX6 board, first OpenCV libraries were built with the above

cross complier. Then, OpenCV static and shared libraries were generated. These libraries were then

copied into an arbitrary directory in the IMX6. After that, the following was set up to ensure that the

application can refer to the shared libraries correctly during run time.

$ vi /etc/ld.so.conf // open shared library configuration file
 Add a directory where you copied the shared libraries
$ ldconfig // reconfigure with newly added directory
$ ldconfig –p // check the opencv libraries correctly registered

Dronekit-python, which is already installed in the IMX6, allows developers to create applications that

can run on-board and communicate with the auto-pilot flight controller (Pixhawk 2) [15]. It provides

application program interfaces in the forms of mavlink protocol that applications programs running on

on-board companion computer are able to receive current state, parameters information of a vehicle, as

well as controlling the vehicle’s movement and operation. By controlling the UAV from an on-board

application using the dronekit API, researchers are able to add their enhanced functionalities such as

vision-based control and artificial intelligence mission decision.

3.1. Vision controller

The vision controller was developed using C++ language and used OpenCV libraries to perform image

processing tasks. It ran as a process and continued to run until it received a termination message from

the root user. This is shown in Figure 3.

Figure 3. The vision controller flow chart

To capture images, GoPro camera was employed. It was connected to the IMX6 board via HDMI

interface and used linux V4L2 (video 4 Linux 2) capture driver. The image format from the camera

was YUYV. An issue was found that the capture driver in the IMX6 board allowed only 640 x 480

resolution. So, regardless of the resolution setting of the camera, all captured images are 640 x 480

resolution. For better detection, we needed to capture 720p (1280 x 720) resolution image. To resolve

this issue, we did not use OpenCV capture library but ported a framework that directly controlled the

capture driver using linux IOCTL kernel interface. As a target object, the symbol of the university as

shown in Figure 4 is set. Every detection cycle required two images: one is a target object image and

the other is a image that includes the target object. Then, the process tried to find the keypoints and

descriptions for both images. Finally, it tried to find any matched keypoints and descriptions from the

latter image. As a result, the target object in the latter image can be found as in Figure 5.

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012015 doi:10.1088/1757-899X/152/1/012015

5

Figure 4. The target object

Figure 5. The detection of the target object

Technically, from previous step, what actually acquired was the coordinates of two points: upper

left corner and lower right of the target object. Using this coordinate information, a binary image can

be made as following Figure 6. Now, using moments functionality, the coordinates of the centre of the

object can be extracted as shown in Figure 7. By calling the kalman filter API with the coordinate as

an input, the filtered and predicted final coordinates was generated. Throughout the image processing

task, the main purpose of vision controller to acquire the coordinate of the target object was achieved.

Next, the coordinate information should be transferred to another process, which was flight controller.

In order to achieve inter-process communication between these two linux processes, local UDP socket

interface was selected due to its simplicity and low overhead. The structure for data communication is

as in Table 3.

Figure 6. Binary image of the object

Figure 7. Finding of the coordinate of centre

Table 3. Communication data structure

Type Name Description

Unsigned int Position_x X coordinate

Unsigned int Position_y Y coordinate

Unsigned short Heading Angle between quad-rotor heading and the object position

3.2. Flight controller

The flight controller was developed using python script that primarily used dronekit python APIs to

control the quadrotor. As explained previously, dronekit python generates mavlink messages to control

the behaviours of the Pixhawk 2, the autopilot. Figure 8 shows an overview of the flight controller’s

behavior. After taking off, it waited for the pose information from the vision controller. As soon as it

received the pose information, it made a decision for its next behavior based on its current position

status relative to the target object. The first test point was whether the object was in the desired area,

which was set as shown in Figure 9. If the object was in the area, the quadrotor hovered. If the object

was not in the desired area, the next test point was the angle between the object and the heading of the

quadrotor. If this angle was not in the margin, then it tried to adjust the heading by commanding the

quadrotor to yaw. Next, if the angle was now in the margin, the only thing left was to command the

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012015 doi:10.1088/1757-899X/152/1/012015

6

quadrotor to translate so as to place the object in the desired part of the image. The algorithm for this

translational and angular movement is as follows.

Input : X,Y,Heading
Output: Turn Angle, Velocity
Constant: Max Speed, Angle Target, PositionX Margin, PositionY Margin, TargetX
Position, TargetY Position, proportional P
Variables : PositionX Difference, PositionY Difference

Repeat
 PositionX Difference = ||TargetX Position| - |X||
 PositionY Difference = ||TargetY Position| - |Y||

 If Angle Target > |Heading|
 If PositionX Margin > PositionX Difference and PositionY Margin > PositionY
Difference
 Hovering
 else
 Velocity = Max speed * math.tanh(P * math.fabs(PositionY Diffence))
 send_mavlink_set_velocity_msg(Velocity)
 else
 Turn Angle = Heading * P
 send_mavlink_set_yaw_msg(Turn Angle, direction)
Until receive termination message;

Figure 8. The flow chart of flight controller

Figure 9. The desired area

4. Experiment

4.1. Hovering stabilization

In this evaluation, the test started with the condition that the target object was in the designed area and

the quadrotor took off until it reached 2 m altitude. This is illustrated in Figure 10. When the quadrotor

detected that the target object was in the desired area, it started hovering and was required to stay in

hovering state since the target object was static. Figure 11, Figure 12 and Figure 13 show the centre

pose (x, y)T of the target object during the hovering.

4.2. Tracking the target object

In this evaluation, the performance of tracking capability was verified. Due to performance limitations

of the main embedded board (IMX6), the real time tracking was virtually infeasible. Therefore, in the

test, the moving target object moved only a short distance (>1 m) and then waited until the quadrotor

detected the new pose of the target object. Figure 14, Figure 15 and Figure 16 highlight the tracking

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012015 doi:10.1088/1757-899X/152/1/012015

7

examples. The initial pose of the object was to the left of the quadrotor. Hence the quadrotor made an

angular movement first. After the heading of the quadrotor and the object was in the margin, it made

translational motion backward.

Figure 10. Quadrotor experiment set up

Figure 11. Trajectory of the centre of the target

object

Figure 12. Trajectory of the centre (x axis) of

the target object

Figure 13. Trajectory of the centre (y axis) of

the target object

Figure 14. Trajectory of the centre of the

target object – tracking

Figure 15. Trajectory of the centre (x axis) of

the target object – tracking

Figure 16. Trajectory of the centre (x axis) of the target object – tracking

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012015 doi:10.1088/1757-899X/152/1/012015

8

5. Conclusion

In this paper, design and implementation of a vision based hovering and tracking algorithm for UAVs

was investigated. The main goal was to implement the above capabilities on-board using the minimal

reserve capacity in deeply embedded processor of the 3DR Solo quadrotor (IMX6). The algorithm was

successfully implemented. The vision controller, which played the role of image capture, calibration,

target detection and estimation of target pose, was developed and verified successfully. Using the pose

information generated by the vision controller, the quadrotor did its task, hovered and tracked, and

steered by the flight controller. Limitations existed mainly in the low performance of on-board system,

especially for image processing with OpenCV where significant delays compromised several core

functions such as real time tracking.

Acknowledgment

This work was supported by Tyche, the Defence Science and Technology Group’s Trusted Autonomy

initiative.

References

[1] Caballero F, Merino L, Ferruz J and Ollero A 2008 Journal of Intelligent and Robotic Systems

 54 137-61

[2] Courbon J, Mezouar Y, Guenard N and Martinet P 2010 Control Engineering Practice 18 789-

 99

[3] Karlsson N, Bernado E D, Ostrowski J, Goncalves L, Pirjanian P and Munic M E 2005

 Proceedings of the 2005 IEEE International Conference on Robotics and Automation

[4] Achtelik M W, Weiss S and Siegwart 2011 IEEE International Conference on Robotics and

 Automation (ICRA)

[5] Nutzi G, Weiss S, Scaramuzza D and Siegwart R 2011 Journal of Intelligent and Robotic

 Systems 61 287-99

[6] Bohdanov D 2012 Quadrotor UAV control for vision-based moving target tracking task Master

 Thesis University of Toronto

[7] Gomez-Balderas J E, Flores G, Garcia Carrillo L R and Lozano R 2012 Journal of Intelligent

 and Robotic Systems 70 65-78

[8] Kendall A G, Salvapantula N N and Stol K A 2014 International Conference on Unmanned

 Aircraft Systems

[9] Bay H, Ess A, Tuytelaars T and Gool L V 2008 Computer Vision and Image Understanding 110

 346-59

[10] Wikipedia Image moment [Accessed online: 21 March 2016]

[11] Bay H, Ess A, Tuytelaars T and Gool LV 2006 9th European Conference on Computer Vision

[12] Bohdanov D 2012 Quadrotor UAV control for vision-based moving target tracking task Master

 Thesis University of Toronto

[13] Welch G and Bishop G 2006 An Introduction to the Kalman Filter University of North Carolina

 at Chapel Hill

[14] I. Corporation 2001 Open Source Computer Vision Library - Reference Manual

[15] D. Robotics 2015 About Dronekit

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012015 doi:10.1088/1757-899X/152/1/012015

9

