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Abstract. Fuzzy gain scheduling is a common solution for nonlinear flight control. The highly 

nonlinear region of flight dynamics is determined throughout the examination of eigenvalues 

and the irregular pattern of root locus plots that show the nonlinear characteristic. By using the 

optimal control for command tracking, the pitch rate stability augmented system is constructed 

and the longitudinal flight control system is established. The outputs of optimal control for 21 

linear systems are fed into the fuzzy gain scheduler. This research explores the capability in 

using both optimal control and fuzzy gain scheduling to improve the efficiency in finding the 

optimal control gains and to achieve Level 1 flying qualities. The numerical simulation work is 

carried out to determine the effectiveness and performance of the entire flight control system. 

The simulation results show that the fuzzy gain scheduling technique is able to perform in real 

time to find near optimal control law in various flying conditions. 

1. Introduction 

Flight dynamics is nonlinear with the motion of an airplane subjected to inherent stability and external 

disturbance [1]. Hence a robust flight control system is important to stabilize and ensure favourable 

flight performance. Present generation aircraft has been augmented with sophisticated flight control 

system. This is especially true for fighter aircraft, which is designed to be inherently unstable to allow 

it to perform extreme manoeuvres. In view of this, optimal control and gain scheduling method are 

implemented to achieve the flight stability and controllability. 

 Linear quadratic (LQ) optimization is commonly utilised in flight control system. The general idea 

of LQ control is to minimize the performance index parameterized by the weighting matrices [2]. In 

performing stability augmented system (SAS) in flight control, the LQ optimization for tracking a 

command system is employed [3]. In addition, publications by [4, 5] shared a similar methodology in 

using LQ optimization to perform nonlinear control and they showed excellent controllability. Besides, 

gain scheduling method is commonly used to deal with nonlinear system and this approach reduces 

computational burden associated with the local linear system [6]. In agreement with research done by 

[7], the gain scheduling composes three important aspects: computation of linear parameter-varying 

models, design of linear control system and interpolation of controller gains. 

  In consonance with the second aspect of gain scheduling, similarity was found in using H-infinity 

controller together with gain scheduling method to improve the global stability [8, 9]. Meanwhile, the 

research study presented in [10] has highlighted the third aspect of gain scheduling, in which a global 

polynomial variable scheduling was examined. 
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 In contrast, it is also stated that the conventional gain scheduling is time-consuming due to the ad-

hoc nature implies more iterative work and requires more operating points [11]. Taking advantages of 

the research done in [12], the fuzzy logic is implemented in line with the gain scheduling. This is due 

to the fact that fuzzy inference system is prone to human understandable logic. Besides, fuzzy logic is 

widely used because of its easy realization and robustness [13]. Credible researches based on fuzzy 

gain scheduling could be found since the 1990’s [14, 15] and similar approach was revised a decade 

later in [5, 11]. As presented by reference publications [5, 11, 14 and 15], they showed the capability 

of fuzzy gain scheduling in performing stable flight control. In addition, the stability based on fuzzy 

system with optimal feedback could also be found in [5, 16]. 

 To date and to the best of author’s knowledge, the work on the fuzzy gain scheduling on highly 

nonlinear flight dynamic is still insufficient. Previous publications showed that the application of fuzzy 

gain scheduling on a wide range of operating region. In fact, the most unstable performance could be 

observed at low speed manoeuvring flight. Therefore, the aim of this article is to perform fuzzy gain 

scheduling over highly nonlinear flight dynamics through examination of the eigenvalues. LQ Optimal 

control is applied on the particular operating point in order to search for the most suitable controller 

gains. The output is interfaced with the fuzzy gain scheduler to perform global flight control system. In 

this paper, full six-degree-of-freedom equations of motions are involved. Hence, for better illustration 

and understanding, Table 1 is provided to show all related abbreviations and symbols. 

Table 1. List of abbreviations and symbols 

Abbreviations Definition 

6DOF six degrees of freedom 

FGS fuzzy gain scheduler  

SAS stability augmented system 

LQ linear quadratic 

Symbols Definition 

U̇, V̇, Ẇ velocity derivatives in body frame with components in body system 

U, V,W body axis wind velocity components 

Vṫ, 𝛼̇, 𝛽̇ wind axis velocity derivatives in body frame with components in body system 

𝜙, 𝜃, 𝜓 Euler angles 

𝜙̇, 𝜃̇, 𝜓̇ Euler angles derivatives 

P, Q, R body axis angular velocity components 

Ṗ, Q̇, Ṙ angular velocity derivatives in body frame with components in body system 

𝑋, 𝑌, 𝑍 body axis x, y and z component forces  

𝑙,𝑚, 𝑛 body axis rolling, pitching and yawing moments  

Vt absolute wind 

M aircraft mass 

gd gravity 

Jx,y,z,xz second moment of inertia corresponding to its axis 

𝑎𝑥 , 𝑎𝑦, 𝑎𝑧 body axis x, y, and z component accelerations 

𝛿𝑒 , 𝛿𝑎 , 𝛿𝑟, 𝛿𝑇 elevator, aileron, rudder and throttle 

ẋ state derivative variables: ẋ = [Vṫ, 𝛼̇, 𝛽̇, 𝜙̇, 𝜃̇, 𝜓̇, Ṗ, Q̇, Ṙ]𝑇 

x states variables: ẋ = [Vt, 𝛼, 𝛽, 𝜙, 𝜃, 𝜓, P, Q, R]𝑇 

y output state variables: y = [𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧]
𝑇 

u control state variables: u = [𝛿𝑒 , 𝛿𝑎 , 𝛿𝑟 , 𝛿𝑇]𝑇 

r, 𝑧 reference input state variables performance output state variables 

K controller gains: K = [𝐾𝛼 , 𝐾𝑞,𝐾𝑖]
𝑇 

Qm, Rm state weighting matrix and control weighting matrix 

𝜔𝑛, 𝜉 natural frequency, damping ratio 
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2. Nonlinear flight dynamics 

Based on [3], the F-16 jet fighter aerodynamics data is employed and the 6DOF nonlinear equations of 

motion are derived based on first-order differential equation. The equations are as the following. 

2.1. Force equations 

 U̇ = RV − QW − gd sin 𝜃 + 𝑋/M (1) 

 V̇ = −RU + PW + gd sin𝜙 cos 𝜃 + 𝑌/M (2) 

 Ẇ = QU − PV + gd cos𝜙 cos 𝜃 + 𝑍/M (3) 

written in wind axis, 

 Vṫ = (UU̇ + VV̇ + WẆ) Vt⁄  (4) 

 𝛼̇ = (UẆ − WU̇) (U2 + W2)⁄  (5) 

 𝛽̇ = (V̇Vt − VVṫ) (Vt√U2 + W2)⁄  (6) 

2.2. Euler kinematic equations 

 𝜙̇ = P + tan𝜃 (Q sin𝜙 + Rcos𝜙) (7) 

 𝜃̇ = Q cos𝜙 − R sin𝜙 (8) 

 𝜓̇ = (Q sin𝜙 + Rcos𝜙)/ cos𝜃 (9) 

 

2.3. Moment equations 

 𝛤Ṗ = Jxz[Jx − Jy + Jz]PQ − [Jz(Jz − Jy) + Jxz
2]QR + Jzℓ + Jxz𝑛 (10) 

 JyQ̇ = (Jz − Jx)PR − Jxz(P
2 − R2) + 𝑚 (11) 

 𝛤Ṙ = [(Jx − Jy)Jx + Jxz
2]PQ − Jxz[Jx − Jy + Jz]QR + Jxzℓ + Jx𝑛 (12) 

where, 

 𝛤 = 𝐽𝑥𝐽𝑧 − 𝐽𝑥𝑧
2  

3. Linearization  

As mentioned in the second aspect of gain scheduling, the flight control is performed under linear 

operating system or steady state condition, hence linearization is necessary. At equilibrium points, the 

trim function is constructed to determine the specific state variables and the control variables, which 

converge the state derivatives into zero. The constraint equations describe the relationship of 6DOF 

nonlinear equations and it is modelled based on analysis by [17]. To analyse with the nine equations, 

the numerical linearization method is utilized [3, 18]. A total number of 21 linear systems are selected 

according to various airspeed and altitude. The outcome of the linearized equations of motion are 

described in Equation 13. 

 ẋ = Ax + Bu (13a) 

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012020 doi:10.1088/1757-899X/152/1/012020

3



 
 
 
 
 
 

 y = Cx + Du (13b) 

 Taking steady state condition at sea level for airspeed of 300 ft/s, the linearized matrices are 

determined and further decomposed into longitudinal state dependent parameters, the linearized state 

space matrices are as presented in Equation 14.  

[

V̇t
𝛼̇
𝜃̇
𝑞̇

] =  [

−0.028
−0.0007

0
0

−6.2682
−0.6099

0
−0.0710

−32.17
0
0
0

−2.6422
0.9012

1
−0.7192

] [

Vt
𝛼
𝜃
𝑞

] + [

0.0112
−0.0013

0
−0.0628

] [𝛿𝑒] (14a) 

[𝑎𝑧] = [0.0066 5.6540 0 0.9238] [

Vt
𝛼
𝜃
𝑞

] + [0.0119][𝛿𝑒] (14b) 

4. Linear quadratic optimal control 

Linearized equations of motion is constructed based on Equation 13 with respect to specific airspeed 

and altitude. The linear LQ optimal controller is designed based on the highly nonlinear region and this 

can be done by examining the root locus plot for the longitudinal mode of motion [1]. Based on the 

selected flying conditions, the root locus plots behave irregular pattern as shown in Figure 1 and this 

implies the nonlinearity of flight dynamics. 

 

Figure 1. Root locus plots for several operating points 

 Taking [2, 3] as references, the optimal control for pitch rate SAS can be formulated based on 

Figure 2.The longitudinal SAS is performed by controlling the pitch rate. Pilot input or the reference 

pitch rate command is given to manoeuvre the jet fighter. In addition, the characteristics of actuator 

and alpha sensor are modelled in term of transfer function. This is to obtain more realistic results in 

performing the stability augmentation. 

 

Figure 2. Pitch stability augmented system block diagram 
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 Based on Figure 2, the LQ optimal control for command tracking is designed and derived. The 

mathematical formulation can be simplified in linear state space model as shown in Equation 15 and 

the control is static output feedback as listed in Equation 16. 

 ẋ = Ax + Bu + Gr (15a) 

 y = Cx + Du + Fr (15b) 

 z = Hx (15c) 

 u = −Ky (16) 

where, 

x =

[
 
 
 
 
𝛼
𝑞
𝛿𝑒
𝛼𝐹

𝜖 ]
 
 
 
 

, u = [𝑢𝑒], r = [𝑞𝑐], z = [𝑞], y = [
𝛼𝐹

𝑞
𝜖

] , K = [

𝐾𝛼

𝐾𝑖

𝐾𝑞

] 

 Optimal control using linear quadratic for command tracking simplify the tuning parameters. By 

adding the time-dependent weighting component [2, 3], the general performance index or cost function 

is described in Equation 17. 

𝐽 =
1

2
∫ (tkx̃TPmx̃ + x̃T(Qm + CTKTRmKC)x̃)dt

∞

0

  Or  J =
1

2
tr(PkX) (17) 

where, 

X = x̅x̅T = Ac
−1Bcr0r0

TBc
TAc

−T, Ac = A − BKC, Bc = G − BKF 

 𝑃𝑚 is the solution for Lyapunov equation for optimal control shown in Equation 18. 

 0 ≡ Ac
TP0 + P0Ac + Pm

0 ≡ Ac
TP1 + P1Ac + P0

⋮
0 ≡ Ac

TPk−1 + Pk−1Ac + Pk−2

0 ≡ Ac
TPk + PkAc + k! Pk−1 + Qm + CTKTRmKC

 (18) 

 By observing the SAS presented in Figure 2, the integrator makes the whole system become type 1 

control system. The natural performance index indicates the performance requirement that minimize 

the tracking error without huge amount of control effort [5]. Hence, the whole tuning parameter could 

now be simplified into single weighting value [2, 3]. This could be done by assigning the parameters 

into Pm = HTH, Qm = 0, Rm = 𝜌. Whereas the 𝜌 term is the only tuning parameter left. 

 The LQ optimal control is performed with an initial guess on the feedback matrix, K and after few 

iterations, the cost function value, 𝐽 converges into a solution that indicates the minimum performance 

index and results in the most appropriate controller gains. Apparently, following the LQ optimal 

design procedure and suitable tuning parameter, 𝜌, the response for pitch rate can be simulated using 

step input function. The result is presented in Figure 3. By checking the eigenvalues, it is found out 

that with the aid of the LQ optimal control, the short period poles shift to −1.833 ± 1.7398𝑖 and this 

gives a response of 𝜔𝑛 = 2.523, 𝜁 = 0.725 that satisfies the Level 1 flying quality [19]. It is essential 

to highlight the advantages of using LQ optimal control. The search for the most suitable controller 

gains is all done by computer, which highly reduced human work load. Besides, this method enables to 

cope with the ad-hoc nature of fundamental trial and error gain tuning method. According to Figure 3, 

the LQ optimal control showed outstanding response, which avoided overshoot and settled at time less 

than 3 seconds. 
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Figure 3. Pitch rate step response at airspeed of 300 ft/s at sea level. 

5. Fuzzy gain scheduling  

A series of linear systems are taken into examination and LQ optimal control is performed. Each linear 

controller design results in three controller gains, 𝐾𝛼 , 𝐾𝑞 and 𝐾𝑖. The results for each controller gains 

are fed into the FGS. Fundamental fuzzy controller is used to schedule the controller gains and the 

fuzzy controller design is well discussed in [20]. Design of fuzzy system is based on Model Rules, 𝑅𝑖. 

 IF x𝑖(t) is M𝑘(x𝑖) AND x𝑗(t)is M𝑙(x𝑗), THEN K = ∑𝛼𝑖 k𝑖 

where 𝑅𝑖 is the 𝑖th rule of the fuzzy system, x𝑖(t) and x𝑗(t) are the current inputs or states fed into the 

fuzzy system, M𝑘 and M𝑙 are the 𝑘th and 𝑖th membership function subjected to inputs x𝑖(t) and 

x𝑗(t) respectively, k𝑖 is the controller gain with respect to the input membership function, 𝛼𝑖 is the 

weighting function. 

 The fuzzy system consists of four main components [20] and each component is described in 

detailed. First, the “rule-base” definition is determined by subjecting reference inputs to the specific 

outputs. Second, the inference mechanism acts as the decision maker based on the inputs parameter. 

Third, the fuzzification interface processes the given inputs into information for inference mechanism. 

The last components describe the defuzzification interface, which gives the conclusions based on the 

results of inference mechanism. The fuzzification inference utilises triangular membership functions 

for both inputs and it is shown in Figure 4. There will be only one rule involves in the whole process, 

which indicates four input membership functions and concludes using the OR defuzzification method. 

The actual corresponding output is weighted using the area rule given in Equation 19. 

 
𝐾 =

∑ 𝐴𝑟𝑖𝑐𝑖
4
𝑖=1

∑ 𝐴𝑟𝑖
4
𝑖=1

 (19) 

where 𝐾 is the output controller gain, 𝐴𝑟𝑖 is the 𝑖𝑡ℎ triangular area of output membership function and 

𝑐𝑖 is the centre of 𝑖𝑡ℎ output membership function. 

21 linear systems are taken into consideration and these cover airspeeds for 300, 250, 400, 440, 

500, 540 and 600 ft/s, and altitude for 0, 10000 and 20000 ft. The outputs from the fuzzy system are 

tabulated graphically and displayed as shown in Figure 5. 
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Figure 4. Airspeed (left) and altitude (right) membership function 

  

 

Figure 5. Controller gains 𝐾𝛼 , 𝐾𝑞 and 𝐾𝑖 versus airspeed and altitude 

 A simple simulation on pitch rate stability augmented system is conducted by randomly selecting 

the flying condition. Two sets of controller gain (output from FGS and pre-set controller gain) are 

applied and compared. Based on the simulation work on flying condition at airspeed of 375 ft/s and 

altitude at 5000 ft above sea level, the step response is presented in Figure 6. The response shows non-

oscillating and non-overshooting results as compared to pre-set controller gain. Besides, by checking 

on the eigenvalues, the short period poles are located at −2.115 ± 1.913𝑖 and this gives a response of 

𝜔𝑛 = 2.852, 𝜁 = 0.742 that also satisfies Level 1 flying quality. It is vital to emphasize that the LQ 

optimal control serve as the effective controller gain finder at a particular operating point whereas the 

fuzzy gain scheduling serve as the global control system for a wide range of operating range. 
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Figure 6. Pitch rate step response at airspeed of 375 ft/s and altitude of 5000 ft above sea level 

6. Conclusion  

In conclusion, the FGS is designed and established in longitudinal flight control system. The nonlinear 

control for longitudinal motion is approximated using 21 linearized models and the selection of the 

linearized system is based on the highly nonlinear region where the eigenvalues show irregular pattern. 

Using LQ optimal control, the tuning parameter is simplified into a single weighting value, 𝜌. Besides, 

this method presents the most suitable controller gain following the optimal cost function and in the 

meantime reduces the time required for controller gain tuning. The controller gains are determined and 

fed into FGS. Two inputs: airspeed and altitude are required to schedule the specific controller gains 

𝐾𝛼 , 𝐾𝑞and 𝐾𝑖. The computer simulation demonstrates the effectiveness in using FGS and the capability 

in achieving Level 1 flying qualities at all time. 
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