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Abstract. n+InAs(Si) epitaxial thin films heavily doped by silicon and Hall effect magnetic 

field sensors based on this structures have been fabricated and studied. We have demonstrated 

the successful formation of highly doped InAs thin films (~100 nm) with the different 

intermediate layer arrangement and appropriate electron mobility values. Hall sensors 

performance parameters have been measured in wide temperature range. Obtained sensitivity 

varied from 1 to 40 Ω/T, while the best linearity and lower temperature coefficient have been 

found in the higher doped samples with lower electron mobility. We attribute this to              

the electron system degeneracy and decreased phonon contribution to electron mobility and 

resistance. 

1.  Introduction 

Magnetic field sensors are widely used in MegaScience research projects as the magnetic field is used 

as a key tool for the control of charged particle beams. In various magnetic field control systems,     

the high precision magnetic field sensors must have good linearity over a wide range of magnetic field 

(1 ÷ 8 T), the low drift of sensitivity and resistance over a wide temperature range - from cryogenic to 

high (4,2 ÷ 600 K). Furthermore, the sensors should be compact in size. For a number of experimental 

systems, an additional requirement is a long-term stable operation of such sensors in conditions of 

charged particles, neutrons and gamma rays radiation [1,2]. Traditional silicon sensors cannot 

withstand such operating conditions. 

A3B5 compound semiconductors offer an advanced performance due to high electron mobility, 

high electron density and thin film technology. Among them InAs and InSb thin film heterostructures 

are most attractive due to high doping level, providing the electron degeneracy and thus, low 

temperature drift [3,4].  However, the mechanical deformations due to the mismatch of the lattice 

constants of GaAs substrate and InAs or InSb make difficult to obtain high-quality InAs layers during 

epitaxial growth. Direct overgrowth of InAs causes propagation of the dislocations from nucleation 

layer to the overlying heterostructure active layers, enhancing the scattering of electrons, thus 

increasing the device resistivity. In the direct epitaxial growth of the relaxed InAs films,                    

the dislocations’ density decreases quickly with an increase of film thickness, and the quality 

improvement is observed with a layer thickness of  > 1.5 ÷ 4 microns [5,6]. At the standard speeds and 

temperatures above 500 °C, the growth of InAs on GaAs leads to the formation of a rough surface and 

stacking faults. The electron mobility in the films with the thickness less than 100 nm is about 

400÷1000 cm
2
/(V·s) that is far below the mobility of the defect-free InAs. 
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The purpose of the present work is the development of epitaxial thin films n+InAs(Si) heavily 

doped with silicon and engineering of Hall effect magnetic field sensors based on this structures.  

2.  Material and device fabrication 

2.1.  Sensor material growth and properties 

The structures were grown by solid-source molecular beam epitaxy Riber Compact 21T on GaAs and 

sapphire substrates. The samples differ by nucleation/transition layer construction  (samples of the 1st, 

2nd and 3rd type) located between GaAs and the doped layer of ~ 100 nm n+InAs(Si). Transition 

layers were introduced to optimize the epitaxial film quality before the growth of n+InAs films. For 

the samples on GaAs substrate GaAs buffer and superlattice AlAs/GaAs were followed by the AlGaAs 

layer, then, in the samples of 1st type i-InAs relaxation layers, for the 2nd type - InxAl1–xAs sublayer 

with InAs content of 75÷90 %, for the 3rd type - the metamorphic transition InxAl1–xAs buffer with  

the change of the composition from 20 to 90 % at a thickness of 1.1÷1.2 μm. 4th type sample was 

highly doped InAs layer grown directly on the sapphire substrate. 

Since the gradual increase of InAs mole fraction up to 100% is difficult to implement due to the 

inertia of the cells effusion, the final part of the transition buffer is implemented as a superlattice 

InAs/InxAl1–xAs. In such a structure, the sharpest drop of In composition and the maximum strain at 

the beginning of the InAs film growth were implemented in the structures of the 1st type. The 2nd 

type provided a more seamless transition from GaAs to InAs lattice. The samples of the 3rd type 

provided the most smooth distribution of misfit dislocations at the relaxation of InxAl1–xAs layer.    

The parameters of the samples (mobility μ and Hall electron concentration nH) are listed in the 

following Table.1. The density of dislocations and stacking faults in the InAs layer affect the electron 

transport properties. To analyze them, the Hall concentration and the electron mobility were measured 

in the wide temperature range (5÷295 K).  

The samples of the first type have low electron mobility and low surface roughness. The introduction 

of the InxAl1–xAs sublayer with the thickness of 25÷30 nm in the samples of the 2nd type increases   

the mobility of electrons by 5÷15 %. The highest electron mobility was observed in the samples of the 

3rd type with the metamorphic buffer with the thickness of 1.0÷1.2 μm, as well as the largest increase 

in mobility at the nitrogen temperature.  

The surface morphology of the films is associated with the growth conditions, temperature and 

pressure of arsenic. If the temperature was increased, the large defects were observed, probably due to 

the clusterization of the metallic In. Excess of As leads to the formation of the stacking faults and 

appearance of the rough surface. The optimal conditions were observed at T of about 460 °C and       

the pressure of arsenic of 4÷5·10
–6

 Torr. The morphology of striated relief was not observed in         

the samples of the 3rd type with a thick metamorphic buffer. This is probably caused by the increase 

of the true temperature of the substrate due to an increase of absorption of infrared heating at the growth 

of layers with a high content of InAs. 

Sample 346 was grown on a sapphire substrate without a transition layer. X-ray diffraction 

revealed the oriented polycrystalline InAs structure of this film. Due to ultra-high Si doping level and 

poor crystalline quality it demonstrated very low electron mobility values and negligible temperature 

dependence of the mobility. In turn this can be used to suppress the temperature coefficients of 

resistance and sensitivity. 

2.2.  Sensor fabrication  

The sensors have a form of Greek symmetric cross performed by contact photolithography and mesa 

wet etching in H3PO4:H2O2:H2O etchant. The active channel width was 200 μm. Contact metallization 

formed by lift-off lithography and Ti/Au (100 nm / 800 nm) vacuum deposition. The wafers have been 

passivated by 100 nm Si3N4 PECVD deposition to eliminate a surface long thermal oxidation and     

the damage during the followed processing. For the contact pads opening ICP dry etching of Si3N4 

have been consequently performed. Hall sensor view is shown in Figure 1. Dies were cutted by disc 

saw. Au wires have been bonded by splitted electrode technique for the electrical measurements.  
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Figure 1. Hall sensor photomicrography. 

3.  Experimental performance 

The sensors have been measured in the DC constant current regime at the different temperatures 

within the range 5÷295 K. Current values were 10 or 20 mA. As the Hall voltage UH in common case 

is dependent on the various physical factors – temperature, magnetic field, heterostructure properties 

etc. Hall sensors performance is described by the series of parameters, defined as follows: 

 sensitivity
0

1 HU
S

I B





, where I0 is sensor current, shown in Figure 2;  

 moreover, temperature sensitivity coefficient 
0
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 resistance temperature coefficient 
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 nonlinearity factor 
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
 , where Ulin(B) is the linear fit of experimental UH(B) 

dependence for the magnetic field interval 0.2-4 T. S0  and  R0 refer to the room temperature. Low 

field data were excluded due to the divergence of UH(B) at B0, accompanied by noise signals 

and systematic magnetic field creep embedded in the superconducting solenoid. Thus (B) 

presented the maximal nonlinearity. The dependence of  on doping density is shown in Figure 3. 

The device properties have been measured by DC current technique in CryoFree closed cycle 

helium cryostat with the superconductive solenoid in a magnetic field up to 6 T. 

Hall sensor and material parameters measured at T=295 K are listed in Table 1. 

Table 1. Material and Hall sensor properties for the different structure types measured at room 

temperature. 

Sample 

 

Type  nH,     

10
13

 cm
-2

 
,           

% 

S, 

Ω/T 

STC, 

10
-3

 %/K 

RTC, 

10
-4

 %/K 
H, 

cm
2
/(V·s) 

162 1 1.93 0.19 32.7 3.5 23.0 5520 

163 3 1.60 0.79 39.8 4.4 200 6440 

252 2 3.29 0.34 19.1 2.5 19.7 3100 

246 2 6.19 0.14 10.1 1.4 18.9 3620 

119 1 1.05 0.03 6.0 1.8 13.1 1980 

346 4 4.95 0.11 1.3 1.2 1.5  190 

It can be seen from Table 1 data that the higher doping and higher electron concentration devices 

demonstrated lower RTC and STC. The reason is high Fermi energy due to high doping level, 

providing low-temperature variation of electron concentration. Resistance variation also depends on 
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electron mobility temperature dependence. Low electron mobility caused by high scattering rate on 

ionized impurities and structural defects. The highest RTC were observed in the samples with a 

combination of lower electron concentration and high electron mobility. In the polycrystalline sample 

346 very low mobility resulted in reduced temperature variations of sensitivity and resistance.  

    

Figure 2. Temperature dependence of sensitivity          Figure 3. Correlation between nonlinearity and  

            for the different samples.                Si doping density. 

It is worth notice that at low temperature (5÷6 K) the Hall signal and magnetoresistance hadn’t 

demonstrated any quantum oscillations with increasing magnetic field, that usually observed in 

quantum well heterostructures with high electron mobility two-dimensional electron gas [7]. We 

account it to the relatively low mobility values due to direct InAs film doping and three-dimensional 

character of electron system in conductive thin films.  

4.  Conclusion 

We have demonstrated the successful formation of highly doped InAs thin films (~100 nm) with      

the different intermediate layer arrangement and appropriate electron mobility values. Hall sensors 

have been fabricated on these structures and their performance parameters have been measured in 

wide temperature range. Obtained sensitivity varied from 1 to 40 Ω/T, while the best linearity and 

lower temperature coefficient have been found in the higher doped samples with lower electron 

mobility. We attribute this to the electron system degeneracy and decreased phonon contribution to 

electron mobility and resistance. 

Acknowledgements 

This work was supported by the Competitiveness Program of NRNU MEPhI.  

References 

[1] Bolshakova I, Vasilevskii I, Viererbl L, Duran I, Kovalyova N, Kovarik K, Kost Y, Makido O, 

Sentkerestiova J, Shtabalyuk A and Shurygin F 2013 IEEE T. Magn. 49 50-53 

[2] Bolshakova I, Belyaev S, Bulavin M, Brudnyi V, Chekanov V, Coccorese V, Duran I, Gerasimov S, 

Holyaka R, Kargin N, Konopleva R, Kost Y, Kuech T, Kulikov S, Makido O, Moreau P, Murari 

A, Quercia A, Shurygin F, Timoshyn S and Vinichenko A 2015 Nucl. Fusion 55(8) 083006 

[3] Okamoto A and Shibasaki I 2003 J. Cryst. Growth 251 560-564 

[4] Geka H, Okamoto A and Shibasaki I 2005 J. Cryst. Growth 278 614-618 

[5] Wang P D, Holmes S N, Le T, Stradling R A, Ferguson I T and de Oliveira A G 1992 

Semicond. Sci. Tech. 7 767-786 

[6] Nee Т E, Lin R M, Hsieh L Z and Chang L B 2002 J. Vac. Sci. Technol. A 20 1128-1131 

[7] Suga K, Kindo K, Ishida S, Okamoto A and Shibasaki I 2004 Physica B 346-347 470-475 

AMNST2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 151 (2016) 012029 doi:10.1088/1757-899X/151/1/012029

4


