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Abstract: Nanostructured thin film metallic coatings has become an area of intense research 

particularly in applications related solar, sensor technologies and many other optical applications 

such as laser windows, mirrors and reflectors. Thin film metallic coatings were deposited using 

DC magnetron sputtering process. The deposition rate was varied to study its influence on optical 

behavior of Aluminum thin films at a different argon flow rate. Studies on the optical response of 

these nanostructure thin film coatings were characterized using UV-VIS-NIR spectrophotometer 

with integrating sphere in the wavelength range of (250-2500nm) and Surface morphology were 

carried out using atomic force microscope with roughness ranging from 2 to 20nm and thickness 

was measured using Dektak measuring instrument. The reflection behavior of aluminium coatings 

on polycarbonate substrates has been evaluated. UV-VIS-NIR Spectrophotometer analysis 

indicates higher reflectance of 96% for all the films in the wavelength range of 250 nm to 2500 

nm. Nano indentation study revealed that there was a considerable change in hardness values of 

the films prepared at different conditions. 
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1. Introduction The need for reflectance of light energy and heat energy is continually increasing 

due to the global rapid growing population, industrial development, and domestic needs. The 

reflectance of solar energy can reduce use of nonrenewable energy sources such as fossil fuels, 

petroleum fuels, and fissionable minerals [1]. Depending upon application thin films are 

categorized into optical, electrical, magnetic, chemical, mechanical and thermal coatings. 

Reflectance of solar energy is used in solar thermal devices such as solar cookers, for cooking, 

water heating, space heating, space cooling, and heat generation process. Solar cookers are easy 

to build, are smoke free, nonpollutant [2]. Aluminum is the most widely used non-ferrous metal. 

It is low cost and has a unique set of fine material properties that have made it ideal to be used in 

many common applications; such as in structural components and mirror reflectors. Aluminum is 

one of the most abundant metals found on Earth, and the recent advancement in the efficiency of 

extracting aluminum from ore has made it relatively cheap to procure. It has about one-third the 

density and stiffness of steel; it is ductile [3].The reflectivity or reflectance (R), of a surface is an 
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intrinsic optical property of a surface. In many optical, electrooptic, telecommunications, solar 

concentrator and architectural applications, reflectance must either be controlled aluminum thin 

films are used to reflect infrared wavelengths to reduce heat loss or ingress through windows. 

Infrared reflectance must be maximized while keeping visible light transmission through the 

window high. Concentrating collectors make use of curved reflectors to concentrate sunlight on a 

receiver. The intensity of sunlight falling on the receiver can be up to 60 times the intensity of 

normal sunlight [4-5]. The sputtering or sputter erosion of solid material by positive-ion 

bombardment is widely used as a source of vapor for thin film deposition because of unique 

combination of advantages over other techniques such as any materials can be volatilized, 

compounds are volatilized stoichiometrically, and film deposition rate can be made uniform over 

very large areasTo ensure the good performance and long technical life time of the reflectors the 

reflective aluminium thin film coatings was analyzed in this work, the optical and mechanical 

properties of the films was assessed. 

It is the purpose of this paper to report on new measurements of the optical reflectance and 

mechanical properties of sputtered aluminum thin films produced from purest aluminum with 

extremely high deposition rate on polycarbonate substrate, and to discuss in addition the effect of 

argon flow and deposition power on the reflectance of aluminum in UV Vis NIR region and 

mechanical properties of aluminum thin films. 

 

2. Material and Methods Aluminum thin film coatings were deposited on polycarbonate substrates 

using DC magnetron sputtering process.  The substrates were cleaned followed by de ionized 

water rinse followed by dry nitrogen gas purge figure 1 shows the schematic diagram of the 

sputtering chamber. DC magnetron sputter coating processes are carried out in vacuum chamber 

at a base pressure of 1 x 10
-5 

mba using argon gas (99.999%), were performed at 500,1250 and 

2000W by using DC power supply. The deposition chamber was filled with pure argon gas with a 

flow rate of 200, 350 and 500sccm for target cleaning; pre sputtering process was carried out with 

shutter positioned over the target there by shielding the flow of plasma towards the substrate for 

about 5 minutes. The deposition conditions are given in table 1 all depositions were performed at 

a fixed substrate to source distance of 270mm with a substrate rotation at a rate of 2rpm The 

substrate temperatures were maintained at room temperature. The coating thickness was 

maintained constant at 400 nm for all the samples. 

 
Figure 1 Schematic of the Pulsed DC Magnetron Sputtering Setup 

 

The coatings were characterized for optical reflection measurements on the films were carried out 

using UV-VIS-NIR spectrophotometer (Model Lambda 750) with the wavelength ranging 

between 250-2500 nm. Film thickness measurements and surface topography of the films were 

carried out using DEKTAK 6M surface profiler. Surface topography and mechanical properties 

of the films of the thin films were done using a nanoindentor (Hysitron-Make). 
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Table 1 Sputtering parameters for aluminum thin film deposition 

 

Process Parameters Values 

Sputtering Gas Argon 

Argon flow rate (sccm) 200, 350, 500 

Power supply DC 

Sputtering Power (w) 500, 1250 and 2000 

Temperature RT 

Substrate Polycarbonate 

Coating Thickness (nm) 400 

Base Pressure (torr) 1 x 10
-5

 

Target Aluminum 

 

Hardness and elastic modulus measurements are the two mechanical properties measured most 

frequently using indentation techniques are the hardness, H, and the elastic modulus, E. As the 

indenter is pressed into the sample, both elastic and plastic deformation occurs, which results in 

the formation of a hardness impression conforming to the shape of the indenter. During indenter 

withdrawal, only the elastic portion of the displacement is recovered, which facilitates the use of 

an elastic solution in modeling the contact process [10,11,12]. Figure 2 (a) shows a typical load–

displacement curve and the deformation pattern of an elastic–plastic sample during and after 

indentation. In Figure 2 (b), hmax represents the displacement at the peak load, Pmax. hc is the 

contact depth and is defined as the depth of the indenter in contact with the sample under load. hf 

is the final displacement after complete unloading. S is the initial unloading contact stiffness. 

Nanoindentation hardness is defined as the indentation load divided by the projected contact area 

of the indentation. It is the mean pressure that a material can support under load. From the load–

displacement curve, hardness can be obtained at the peak load as  

 

H �
P���

A
                                                                                                                         (1) 

 
where A is the projected contact area. Measurement of the projected contact area from a load–

displacement curve requires the contact depth, hc. The elastic modulus of the indented sample can 

be inferred from the initial unloading contact stiffness, 
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i.e. the slope of the initial portion of the unloading curve. Based on relationships developed by 

Sneddon [13] 

Er is the reduced elastic modulus, which accounts for the fact that elastic deformation occurs in 

both the sample and the indenter. Er is given by 
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where E and ν are the elastic modulus and Poisson’s ratio for the sample, respectively, and Ei and 

νi are the same quantities for the indenter. For diamond, Ei = 1141 GPa and νi = 0.07 [10, 13]. 
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(a)                                                                           (b) 

Figure 2 (a) A typical load–displacement curve and (b) the deformation pattern of an elastic –

Plastic sample during and after indentation [11] 

 
3. Results and Discussions Rate of deposition with respect to argon flow and processing pressure 

curves of the aluminium thin film coatings are shown in figure 1(a) and current and voltage 

variations are shown in figure 1(b). 

 

 
                                               (a)                                                                      (b)   

Figure 3 (a) Rate of deposition with respect to Argon Flow and processing Pressure (b) Current 

Vs Voltage Variation With respect to Argon 

 

As mentioned earlier, aluminium has a broad spectral band of high reflectivity and therefore, it is 

not surprising to see that one of its prevailing uses is in solar reflector coatings where a thin film, 

typically in the order of nanometer, of pure aluminium is deposited on a substrate by DC 

magnetron sputtering in vacuum. Figure 3 (a) shows the thickness variation 12nm to 13nm at 

200sccm argon flow with processing pressure of 1 X 10
-3

 torr, 23nm to 46nm at 350sccm argon 

flow with processing pressure of 4 X 10
-3

 torr and 48nm to 69nm at 500 sccm argon flow with 

processing pressure of 6.2 X 10
-3

 torr and process pressure variation is as shown figure 3 (b) 
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shows the current and voltage variation with respect to change in argon flow. Pure aluminium 

reflectors are not protected with an overcoat. It is prone to oxidation tarnishing, and a barrier 

oxide layer is formed when aluminium is reacting with oxygen in air. The resulting oxide layer is 

tough and corrosion resistant in normal environments. However, it can become susceptible to 

changing environmental conditions and cannot be easily cleaned without damaging the 

aluminium coating. In addition, even though oxidation reduces aluminium reflectance by creating 

unnecessary scattering, the effect is quite limited in the visible spectrum. Therefore, for low end 

consumer and non-critical applications, the cost benefits of using just bare aluminium can 

significantly outweigh the marginal reflectance improvement in visible spectrum. The average 

reflectivity for bare aluminium is above 96% for 400 nanometers at different powers. Because it 

is also not coated, it is not sensitive to polarization and angle of incidence and so provides 

consistent high reflectance throughout the near-ultraviolet, visible and near-infrared regions as 

shown in figure 4. 

 

UV-VIS-NIR spectra of the Aluminium thin films at different power and at different argon flow 

are shown in Figure 4. Table 4 shows the percentage distribution of reflection in UV-VIS-NIR 

regions. There is a linear increase in reflectance from UV to NIR and a corresponding linear in 

reflection in the wavelength range of 250 to 2500nm. However, from 1500-2500nm, there is a 

significant difference between the two plots since the surface roughness, hardness and film stress 

begin to dominate in the NIR region and hence there is constant reflection. There is no significant 

change in the response of UV-VIS- NIR of films varied with different power and argon flow. 

From the reflection spectra there is a clear indication that the Aluminium acts as perfect reflector. 

 

Table 2 Optical reflectance of aluminium films deposited on polycarbonate substrate 

 

Argon flow(sccm) 200 350 500 

Power (W) 500 1250 2000 500 1250 2000 500 1250 2000 

UV (100-380)  57 75 45   56 66 77   55 60 40 

VIS (380-780)  59 86 76   60 86 88   51 69 73 

NIR (780-2500)  90 96 96   78 96 96   55 92 96 

 

 

    
                                                      (a)                                                                    (b)   
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(c) 

Figure 4 Shows Reflectance spectra for argon flow at (a) 200sccm (b) 350sccm and (c) 500sccm 

  

Optical Reflectance of Aluminium Films the percentage of optical reflectance of aluminium films 

deposited on polycarbonate substrates at various wave lengths is shown in Table 2. The optical 

requirement that must be fulfilled for reflectors is high reflectance in the entire wavelength range 

of the solar spectrum. Metal, that obey the high reflectance is aluminium, should therefore be 

suitable. Aluminium is the best candidate, with a solar hemispherical reflectance of 92% for 

aluminium. figure 4(a) shows the reflection spectra obtained from DC magnetron sputtering 

process at room temperature. High reflection property is obtained when the argon flow 350 sccm 

at 2000w the reflection in UV region 77% , VIS region 88% and NIR region 96%, we have 

achieve optimum thickness of 400 nm. If the power is increases too much, the aluminium layer 

will reflection remains same due to the higher dissolving power. Moreover, with increase in argon 

flow 200 sccm to 500 sccm the reflection increases from 50% in UV region to 55 % and the 

optical properties of the aluminium films will 96% with change in argon flow and power. The 

optimum reflection can be achieved by maintaining argon flow of 500 sccm with sputtering 

power of 2000w i.e., 96% reflection. 

Figure 5 shows the AFM images of the samples with varying argon flow and power surface 

roughness of the aluminium thin film coatings at 200sccm argon flow the roughness increased 

from 3nm to 17nm with increase in power from 500 to 2000w shown in figure 5 (a), (b) and (c), 

at 350sccm argon flow the roughness increased from 8nm to 13nm with increase in power from 

500 to 200w figure 5 (d), (e) and (f),   and at 500sccm argon flow the roughness increased from 

4nm to 16nm with increase in power from 500 to 2000w as shown figure 5 (g), (h) and (i) and 

table 3 shows the variations in roughness with increase in argon flow and power. 
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20

30

40

50

60

70

80

90

100

250 750 1250 1750 2250

R
e
f
le

c
ti

o
n

 (
%

)

Wavelength (nm)

500w 1250w 2000w

IConAMMA-2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 149 (2016) 012071 doi:10.1088/1757-899X/149/1/012071

6



     
                               (d)                                               (e)                                                  (f) 

   
                                  (g)                                              (h)                                                (i) 

Figure 5 AFM images of Aluminium thin films (a) at 200 Sccm & 500W (b) 200 Sccm & 1250W 

(c) 200 Sccm & 2000W (d) at 350 Sccm & 500W (e) 350 Sccm &1250W (f) 350 Sccm & 2000W 

(g) 500 Sccm & 500W (h) at 500 Sccm & 1250W (i) 500 Sccm & 2000W  

 

Table 3 Optical reflectance of aluminium films deposited on polycarbonate substrate 

 

Argon flow(sccm) 200 350 500 

Power (W) 500 1250 2000 500 1250 2000 500 1250 2000 

Ra(nm) 2.8 9.6 16.6 7.1 10.2 12.3 3.9 13.2 16.3 

Rq(RMS) 5.5 12.4 19.7 9.5 13.8 15.4 6.4 17.1 19.5 

 

Figure 6 shows the nano indentation plots of DC magnetron sputter coated aluminium thin films 

with argon flow at (a) 200sccm (b) 350sccm and (c) 500sccm . The hardness of the aluminium 

films coated at 200sccm as decreases from 1.7 to 0.4Gpa as the power increases from 500 to 

2000w, at 350sccm the hardness increases from 1.8 to 0.5Gpa while that of coatings deposited 

with at 500sccm has a hardness of 1.9GPa due to the effect of surface roughness. The stiffness 

and modulus values of these films are given in Table 3. There is a slight variation in the stiffness 

while the modulus is varied between 10 to 20%.  

 
Table 4 Nano indentation mechanical property of aluminium thin film at (a) 200 Sccm (b) 350 

Sccm and (c) 500 Sccm 

 

Argon flow(sccm) 200 350 500 

Power (w) 500 1250 2000 500 1250 2000 500 1250 2000 

Stiffness (µN/nm) 5.6 6.6 7.1 5.4 6.3 6.5 5.5 7.4 8.1 

Hardness(GPa) 1.7 0.5 0.4 1.8 0.6 0.5 1.9 0.7 0.6 

Modulus(GPa) 9.7 6.1 5.7 9.4 6.2 5.9 9.2 6.5 6.2 
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     (a)                                                                    (b)   

 
(c) 

Figure 6 Nanoindentation test Aluminium films at a maximum load of 500uN (a) 200 Sccm (b) 

350 Sccm and (c) 500 Sccm 

4. Conclusions 

DC magnetron sputter deposition of thin films of aluminium on polycarbonate substrates results 

in formation of pure Aluminium films if the substrate temperature is at RT; if the Agon flow and 

power is varied from 200 to 500sccm with power ranging between 500 to 2000w, even thought 

the sputter target is 4N pure Aluminium, the as deposited thin film on the substrate shows 

variation in optical and mechanical properties. The UV-VIS-NIR responses of the coatings 

deposited at different flow rate and power are similar in the wavelength range of 250 to 2500 nm. 

With increase in power from 500w to 2000w with argon flow rate of 500sccm, had lower surface 

roughness (Ra<3 nm) compared to the coating deposited with argon flow rate at 500sccm. When 

the argon flow rate was maintained at 500sccm during sputter deposition of 4N purity aluminium, 

as a result the coating had a hardness of 1.9GPa using DC power supply, while that of pure 

aluminium deposited at 200sccm had a hardness of 1.7GPa. Hardness of the aluminium thin films 

with variable power is reduced. 
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