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Abstract. This paper present tribological and dynamic evaluation of reduced graphene oxide (rGO) 
sheets as an additive in lithium grease. Highly dispersion mixing method is used to mix rGO in 
commercial lithium grease to prepare composite grease. Tribological contact under investigation is 
established by ball-on-disc configuration. Friction, noise and vibration responses are recorded for 
the point contact lubricated with composite grease and base lithium grease in rolling and sliding-
induced-rolling conditions. Relative speed of disc with the speed of ball is varied in order to get 
sliding-induced-rolling contact. Observations are performed at different nornal loads and fixed 
speed in elastohydrodynamic lubrication (EHL) regime. Results show existence of an optimum 
concentration (0.4% w/w) of rGO in commercial lithium grease. Friction, noise and vibration are 
recorded minimum for concentration of 0.4% w/w of rGO in commercial lithium grease. Reduction 
in friction coefficient is recorded up to 30% and 20% for rolling contact and sliding-induced-rolling 
contact respectively at optimum concentration of rGO in lithium grease. The lamellar structure of 
rGO in base grease controls the lubricity of concentrated point contact. 

1. Introduction
Every phenomenon in the mechanical system consists of relative motion between two surfaces in contact, 
involves friction and wear. Break through efforts are made to diminish/optimize the friction and wear 
through the application of lubricants, proper material selection, design modifications, etc. [1]. Modification 
in mechanical components design helps in reduction of friction of rubbing surfaces, one of such important 
mechanical component is rolling element bearings. Research has been carried out on the application and 
influence of lubricants, additives, and lubrication process on tribo concentrated contacts [2]. The role of 
lubricants is important in minimizing the friction between the rubbing surfaces. On the basis of their 
physical state they are classified as solid, semi-solid, liquid and gaseous. Grease is a semi-solid lubricant 
with base oil, thickener and additives as constituents. Grease are characterized by 3- dimensional thickener 
fibrous structure dispersed in base oil [3]. The base oil bleeds out on the application of mechanical stresses 
and further reabsorbed on removal of stresses. This tends the greases to behave more or less like a sponge 
[4]. Depending on applications greases have many advantages such as: better in squeeze film lubrication, 
sealing to contact avoiding contaminants etc. In spite of these advantages greases traps additives ranging 
from nano to few microns in their 3-dimensional fibrous structure. Greases forms the thin film with 
additives, which separates the interacting surfaces. Research on carbon based nanoparticles are being 
developing at relentless pace to study the application in wide range of technologies- from electronics to 
nano-fluids/lubricants [5–20]. Nano grease based on Carbon based nanoparticles are under study for not 
only its improved tribological property but also for enhanced heat transfer capacity and thermal stability 
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in thermal greases; which are being used as thermal Interface material (TIM) in electronics devices 
including LED [7,12–16]. Use of optimum concentration of alkali fluorides (CaF2) nano-particles as 
additives to lithium grease exhibited anti-wear, friction reduction and extreme pressure properties [21]. 
Apart from anti-wear, friction reduction and enhanced load carrying capacity nano-calcium borate (NCB) 
as additives also shows significant changes in dropping point, unworked penetration and roll stability of 
lithium grease [22]. Titanium complex grease based on nano-titanium dioxide and nano-silicon dioxide 
shows improved tribological properties, while load-carrying capacity shows no significant changes [23]. 
Some literature also shows study of carbon nano-particles based grease.  
  Graphene is a prominent member of the carbon based nano-particles family. Graphene have excellent 
mechanical, electrical, thermal and optical properties [6,8,9,17,18]. Besides these properties, nano-spaced 
layered structure of multi-layered graphene makes it easy tangential shearing. In recent years, nano-
particles including graphene based lubricants, oil as well as greases, have received greater attention of 
researchers [21–29]. Fan et al. [10] showed Multilayer Graphene (MLG) as better additive to bentone 
grease as compared to ionic liquid or graphite. MLG showed significant improvement in lubrication and 
physical properties along with thermal stability of base bentone grease. However, these researchers have 
studied tribological performance of nanoparticles added greases but little literature is available regarding 
noise and vibration study.  
     The aim of this work is to explore simultaneous study of friction, noise and vibration of rGO added 
commercial lithium grease in rolling and sliding-induced-rolling conditions at fixed speed and different 
loads. The present work focusses on establishing some co-relation between friction, noise and vibration (if 
exists) of concentrated point contact supplied with nano rGO grease at various concentrations in lithium 
grease. 

2. Materials and methods

2.1. Materials 
A flattened chrome steel disc (AISI 52100) and super finished ball (AISI 52100) are used to establish 
tribological contact. The surface characterization of disc and ball on profilometer (Talysurf- by Taylor 
Hobson Ltd.) revealed surface roughness (Ra) of 0.01 µm and 0.02 µm respectively. Commercially 
purchased lithium grease is selected as base grease for the preparation of composite grease. The grease is 
mineral oil based with operating temperature range from -300C to 1200C and dropping point above 1800C. 
The additive rGO is provided by CSIR- Indian Institute of Petroleum, Dehradun.  

2.2. Preparation of composite grease 
Highly dispersion mixing method is followed for mixing rGO in lithium grease. Dispersion of rGO in 
toluene is carried by sonication for 1 hour. Sonication is performed for breakage of the agglomerates of 
rGO. The rGO-toluene dispersion is added drop-wise in hot lithium grease. Hot lithium grease is under 
heavy mechanical stirring and maintained at 110℃ to allow toluene to evaporate. Mechanical stirring is 
provided by magnetic stirrer for more than 45 minutes. The prepared hot mixture of rGO and lithium grease 
is allowed to cool up to room temperature under normal environmental conditions to obtain desired 
composite grease. 
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Figure 1. Method for the preparation of composite grease. 

2.3. Characterization of rGO 
Powder X- Ray diffractometer (Rigaku MiniFlex- 600, Japan) is used to identify the phase of rGO 
nanoparticles. The XRD powder diffraction pattern measurement is performed with Cu Kα radiation (λ = 
1.5418 Å) at 40 kV and 15mA. The use of HRTEM to demonstrate micro fibrous structure of lithium base 
grease after the oil content was removed. Scanning electron microscopy reveals the layered structure of 
commercially obtained rGO, which is dispersed into toluene to get the nano-sheets of rGO. Dynamic light 
scattering (Particulate Systems NanoPlus from Micromatrics, USA) is used to characterize the dispersion 
in order to estimate the size distribution of rGO particles.  

2.4. Tribological evaluation 
Frictional performance of grease is evaluated with a fully automated EHD rig (PCS Instruments, London). 
Grease lubricated tribological contact is established with flattened disc on ball configuration (figure 2) in 
EHD rig. The experiments are performed at fixed ball speed 0.3 m/s and at different loads 10N, 20N, 30N, 
40N and 45N (corresponding Hertz pressure are 0.6 GPa, 0.8 GPa, 0.9 GPa, 1.0 GPa and 1.2 GPa 
respectively) for rolling and sliding-induced-rolling conditions. The rolling and sliding-induced-rolling 
conditions are constrained of Slide-roll ratios (SRR) - 3% and 27% respectively. The parameter-SRR is 
the measure of sliding component in the rolling motion of ball-disc pair. Relative speed of the disc with 
ball is varied in response to get fixed SRR. For a particular SRR, the speed of ball remained fixed at input 
speed, while speed of disc varied according to the mathematical relation as SRR (%) = 

�����
�����

�

 ×100, where, 

�� � Speed of disc (mm/s) and ��	 � Speed of ball (mm/s). 

Figure 2. Schematic representation of ball-on-disc configuration in EHD rig. 

2.5. Noise and vibration measurement 
Noise and vibration of the contact is measured for dynamic evaluation of grease lubricated tribological 
contact. The experimental parameters were same as of tribological evaluation. The measurement required 
an external set-up to EHD rig. A sound level meter (CEL 500, from CASELLA CEL Ltd., UK) is used for 
the measurement of Sound Pressure Level (SPL) of the contact noise. The microphone of the sound level 
meter was placed near to disc-ball contact using a tripod. SPL was measured under ‘A’ weighting 
condition. A non-contact type condenser based transducer, positioned near to ball-disc contact is used to 
capture vibration signals. The transducer was connected to its amplifier (Accumeasure 9000, by MTI 
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Instruments Inc., USA) which passes signals to display and store in double channel FFT Analyser (by 
ONO SOKKI CO. Ltd., Japan).  

3. Results

3.1. Reduced Graphene Oxide (rGO) 
Figure 3a shows diffraction pattern obtained from XRD of rGO. The broad diffraction peak reveal a very 
small size of rGO particles. The JCPDS- Card no. 75-2078 indicates that phase of rGO is graphite. Figure 
3b demonstrates the scanning electron microscopic image for the layered structure of rGO. Figure 4 shows 
the distribution of rGO into toluene. There are rGO clusters of different particle sizes which register 
difference in scattered light intensity. Further, figure 4 reveals that there are some nano-sized particle of 
rGO along with micron size clusters. The dispersion of these rGO into commercial lithium grease will 
results different composite greases. 

Figure 3. Characterization of rGO: (a) X-ray powder diffraction pattern and (b) SEM micrograph of 
rGO. 

Figure 4. Particle size distribution of dispersed rGO in toluene. 

3.2. Frictional response 
Figure 5 gives frictional response of ball-disc tribological pair lubricated with varying concentration of 
rGO in base grease. A superficial look at figure 5a and 5b shows blending of rGO in base grease leads to 
significant improvement in frictional performance of base grease. Figure 5a shows frictional response for 
almost rolling contact (SRR 3%). Figure 5a shows level of friction is very low for the entire range of load. 
However, there is a general trend of increase in friction coefficient with load. However, when concentration 
of rGO increases beyond 0.40% (w/w) frictional performance of composite grease start degrading. It 
reveals that there exist an optimum concentration of 0.40% (w/w) of rGO in commercial lithium grease. 
While considering figure 5b, there is a significant increase in friction coefficient for the sliding-induced-
rolling motion (SRR 27%) of disc-ball tribological pair. For both rolling conditions with respect to SRR 
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%, friction coefficient increases with load and composite greases show improved frictional performance 
as compared to base grease. Thus, friction level is minimum for optimum concentration 0.4 % (w/w) of 
rGO in base grease.  

Figure 5. Variation of friction of coefficient with load for base grease and composite greases at different 
concentration of 0.20% rGO, 0.40% rGO and 0.60% rGO at different SRR of (a) 3% and (b) 27% 

respectively at fixed speed of 0.3 m/s. 

3.3. Noise 
The noise level is suppressed by the blending of  rGO at different concentrations in commercial grease. 
Figures 6 and 7 shows the variation of noise level with load and concentration of rGO in grease at constant 
speed of 0.3 m/s during rolling contact (3% SRR) and rolling-sliding induced contact (27% SRR) 
respectively. The effect of loads (10N, 30N and 45N) is shown horizontally and effect of amount of rGO 
(0% w/w and 0.4% w/w) in base grease is shown vertically (figure 6 and 7). The variation of noise level 
with corresponding frequency are shown in spectra (figure 6 and 7) ranging from 20 Hz to 20,000 Hz. 
     The overall noise level (figure 8a), corresponding to fequency spectra (figure 6), shows the increase in 
noise level with increasing load. The minima in overall noise level is recorded when 0.4 % (w/w) of rGO 
is blended in commercial grease. Similarly, overall noise level (figure 8b) of frequency spectra at 27 % 
SRR (figure 7) also gives the minimun noise level for 0.4 % (w/w) of rGO in lithium grease. But the overall 
noise level is increased for 27 % SRR on comparing it with 3 % SRR (figure 8b). 

Figure 6. Variation of noise level with load and concentration of rGO at constant speed of 0.3 m/s during 
rolling contact (3% SRR). The effect of loads (10 N, 30 N and 45 N) is shown horizontally and 

effect of amount of rGO (0% w/w and 0.4% w/w) in base grease is shown vertically. 
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Figure 7. Variation of noise level with load and concentration of rGO at constant speed of 0.3 m/s during 
sliding-induced-rolling contact (27% SRR). The effect of loads (10 N, 30 N and 45 N) is shown 

horizontally and effect of amount of rGO (0% w/w and 0.4% w/w) in base grease is shown 
vertically. 

Figure 8. Variation of overall noise level  in SPL dB(A) with load and SRR % for base lithium grease 
and composite greases with different percent concentrations (w/w) of rGO at constant speed of  0.3 

m/s: (a) 3 % SRR (b) 27 % SRR. 

3.4. Vibration 
Figure 9 show vibration level at the contact lubricated with varying concentration of rGO in base grease at 
fixed speed and different loads. The vibrational response in rolling condition (SRR 3%) is shown in figure 
9a. There is a general trend of increase in vibration level with load for a particular type of grease.  Although 
the variation in magnitude is very low. Considering the response for composite greases, vibration level 
decreases with increase in concentration of rGO. Decrease in vibration level is subjected to an optimum 
concentration of rGO (0.40% w/w). Further increase in concentration level of rGO leads to significant rise 
in vibration. The vibration level for sliding-induced-rolling condition is shown in figure 9b. The trend for 
vibration level is increasing with load and decreasing with increase in concentration of rGO in   composite 
greases. The reduction in vibration level is subjected to an optimum concentration of 0.4 % (w/w) of rGO 
in greases as like in rolling condition (3 % SRR).  
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Figure 9. Variation of vibration level with load for base grease and composite greases at different 
concentration of 0.20% rGO, 0.40% rGO and 0.60% rGO at different SRR of (a) 3% and (b) 27% 

respectively at fixed speed of 0.3 m/s. 

4. Discussion
Considering the condition monitoring, reduction in friction usually causes improvement in life of 
concentrated contact. Composite greases find wide application in reducing the frictional losses of 
concentrated contacts resulting in reduced noise and vibration. Thus, due to enhanced properties of 
composite greases compared to conventional grease, tends to improve the operating life of concentrated 
contacts in wide variety of machine and mechanisms. The increase in friction due to induced sliding may 
be refer to increase in rubbing at contact. The general trend of increase in friction coefficient with load 
may be attributed to the argument that the tribo-pair is working under mixed lubrication regime. The 
improved frictional behavior of composite grease may be  attributed to extremely thin layered structure of 
rGO which form a protective film to separate the steel surfaces [10,30]. The layered structure of graphene 
offer very low shear resistance [30] which leads to low friction between pair. The parameters friction, noise 
and vibrations are seen to be inter related in the present study. With the rise in friction coefficient of tribo 
pair with variation in load, noise and vibration level also increases. But optimality in concentration of rGO 
(0.4% w/w) in commercial grease reduces these parameters to the minimum. 

5. Conclusion
The rGO is able to modify the lubricating performance of commercial lithium grease. The improvement in 
tribological and dynamic characteristics of contact lubricated with composite grease, is subjected to an 
optimum concentration of rGO in lithium grease. The optimum concentration of rGO is 0.4% (w/w) in 
base lithium grease for both rolling point contact (3% SRR) and sliding-induced-rolling contact (27% 
SRR). At optimum concentration the lubricated contact is characterized with minimum friction, noise and 
vibration. Friction coefficient decreased up to 30% and 20% for rolling and sliding-induced-rolling contact 
for optimum concentration of rGO as compared to base lithium grease. The composite grease provide a 
boundary film of lubricant between rubbing contact. The improved performance of composite grease may 
be attributed to layered structure of rGO. The layers of rGO facilitates easy shearing between contacts. 
The increase in SRR leads to increase in friction, noise and vibration of tribological point contact. 
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