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Abstract: The lot sizing problem deals with finding optimal order quantities which minimizes
the ordering and holding cost of product mix. when multiple items at multiple levels with all
capacity restrictions are considered, the lot sizing problem become NP hard. Many heuristics
were developed in the past have inevitably failed due to size, computational complexity and
time. However the authors were successful in the development of PSO based technique namely
iterative improvement binary particles swarm technique to address very large capacitated
multi-item multi level lot sizing (CMIMLLS) problem. First binary particle Swarm
Optimization algorithm is used to find a solution in a reasonable time and iterative
improvement local search mechanism is employed to improvise the solution obtained by BPSO
algorithm. This hybrid mechanism of using local search on the global solution is found to
improve the quality of solutions with respect to time thus IIBPSO method is found best and
show excellent results.

1. Introduction:

Lot sizing problem gained the attention of researchers due to its impact on inventory levels and total
cost. Lot sizing deals with finding optimal order quantities of various items in the BOM structure with
a sole objective to minimize total cost which includes both setup and holding costs. minimizing the
total cost of production is always be a trade-off solution between ordering and holding costs. In fact, a
number of costs like carrying the cost, setup cost, minimum ordering quantity, shortage cost, handling
cost and minimum ordering costs play a vital role in decision making. considering several costs, multi
items and multi levels make the inventory model, a very complex and lead to most infeasible
solutions. Hence, the problem of lot sizing is attracted by several researchers for development of
feasible solutions.

In this paper an attempt has been successfully made to solve very large multi item multi level lot
sizing problem (CMIMLLS) using Binary Particle Swarm and Improved iterative Binary Particle
Swarm Algorithms separately. The ability of these algorithms is compared by solving few sets of
problems available in the literature.

The lot sizing problems can be mainly divided into Single level lot sizing problems (SLLS) and Multi-
level lot sizing (MLLS) problems with and without capacity restrictions. SLLS problems without
capacity restriction are simplest among them. Several heuristics were developed and successfully
implemented on SLLS problems. In 1958, Wagner and Whitin (2004) introduced the SLLS model and
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developed a well-known exact algorithm based on dynamic programming]After that, Silver and Meal
(1973) proposed the idea of minimizing average setup and inventory costs over several periods. Mc
Knew and Coleman (1991) proposed a part period algorithm for minimizing setup and holding cost
over different periods. Hernández, W. and G. Süer, proposed a genetic algorithm (GA) for solving the
single level uncapacitated lot sizing problem with no shortages. A few heuristics techniques were also
developed to solve MLLS problems. N.Dellart, J.Jeunet successfully applied a Randomized multi-
level lot-sizing heuristics for general product structures. Regina Berretta, Luiz Fernando Rodriguez
proposed A memetic algorithm for a multi stage capacitated lot sizing problem .Tasgetiren and Liang
presented particle swarm optimization (PSO) in 2003 to minimize the inventory setup and holding cost
for minimization of simple product structures N.Dellart, J.Jeunet, N.Jonard successfully applied PSO
for uncapacitated multi level lot sizing problem with flexible initial weight .Klorklear
Wajanawichakon and Rapeepan Pitakaso implemented PSO (2011) for multi level unconstrained
problems of general product structures.

In this paper, the authors have made an attempt to solve very large and complex product structure of
capacity constrained multi item multi level lot sizing problem (MIMLLS). An iterative improvement
search with BPSO approach is used to simulate CMIMLLS problem and solved several problems with
time and solution efficiency. The authors have also solved the problems considered using Genetic
Algorithm, BPSO and IIBPSO separately. The results of Binary GA, Iterative Improvement BGA
(IIBGA), BPSO are compared with the proposed method IIBPSO for the same set of problems under
consideration. The Paper is organized in six sections: section2: mathematical formulation of
CMIMLLS problem section3: IIBPSO procedure Section 4: numerical example section5: problem
illustration and section6: conclusion are presented.

2. Mathematical Formulation of problem:

The lot sizing problem that we considered in this paper can be described as follows. We have ‘N’
items to be produced in ‘T’ periods in a planning horizon such that a demand forecast would be
attained .In a multistage production systems ,the planning horizon of each item depends on the
production of other items, which are situated at lower levels. The resources for production and setup
are limited. Lead times are assumed to be zero.

Let N be the number of items, T the number of periods in the planning horizon the number of types of
resources. Cit the unit production cost item I in period t, hit the unit holding cost of item I in period
t,Sit is the setup cost of item i in period t,dit the demand for item I in period t,Vikt the amount of
resource k necessary to produce item i in period t, bkt is the amount of resource k available in period t,
M is the upper bound on Xit ,S(i) the set of immediate successor items to item I, and rij is the number
of units of item i needed by one unit of item j, where jϵ S(i).

Decision variables are xij is the lot size of item i in period t, yit is ‘1’ if item is produced in period t
and zero otherwise. Iit the inventory of item i in period t.
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The objective function (1) is to minimize the sum of production, inventory holding and setup cost in T
periods. Equation (2) is inventory balance constraint, which describe the relationship between
inventory and production at the beginning and the end of the period. Constraint (3) represents the
capacity limitations of production and setup. Constraint(4) ensure that the solution will have setup
when it has production .The last two constraints (5) and (6) require that variables must be positive and
setup variables must be binary.

Several factors like ordering cost, holding cost, shortage cost, capacity constraints, minimum and
maximum order quantity etc... Combination of these factors result in different models to be analyzed
like capacitated or uncapacitated, single level or multi level, single item or multi item models.simple
single product structures can be solved easily using mathematical equations .as CMIMLLS problems
are having very large solution space they are considered as NP-hard problems that does not have
solution with polynomial time. So soft computing techniques are necessary to compute optimum
values of lot sizes.

In this paper authors have made an attempt to solve very large complex product structure of capacity
constrained multi product multi level lot sizing problem. An iterative improvement binary PSO
approach is used to simulate CMIMLLS problem and solved the same with time and solution
efficiency. The authors have also solved similar problems using BGA, IIBGA,BPSO. The results of
BGA, IIBGA, BPSO, and IIBPSO are compared for the same set of problems under consideration.

3. Iterative Improvement Search Binary Particle Swarm Optimization (IIBPSO) Procedure:

Particle Swarm Optimization (PSO) is one of the evolutionary optimization methods inspired by
nature which include evolutionary strategy (ES), evolutionary programming (EP), genetic algorithm
(GA), and genetic programming (GP). PSO is distinctly different from other evolutionary-type
methods in that it does not use the filtering operation (such as crossover and/or mutation) and the
members of the entire population are maintained through the search procedure. In PSO algorithm, each
member is called “particle”, and each particle flies around in the multi-dimensional search space with
a velocity, which is constantly updated by the particle’s own experience and the experience of the
particle’s neighbors. Since PSO is basically developed through simulation of bird flocking in the two
dimensional space and was first introduced by Kennedy and Eberhart (1995, 2001), it has been
successfully applied to optimize various continuous nonlinear functions. Although the applications of
PSO on combinatorial optimization problems are still limited, PSO has its merit in the simple concept
and economic computational cost.

The main idea behind the development of PSO is the social sharing of information among individuals
of a population. In PSO algorithms, search is conducted by using a population of particles,
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corresponding to individuals as in the case of evolutionary algorithms. Unlike GA, there is no operator
of natural evolution which is used to generate new solutions for future generation. Instead, PSO is
based on the exchange of information between individuals, so called particles, of the population, so
called swarm. Each particle adjusts its own position towards its previous experience and towards the
best previous position obtained in the swarm. Memorizing its best own position establishes the
particle’s experience implying a local search along with global search emerging from the neighboring
experience or the experience of the whole swarm. Two variants of the PSO algorithm were developed,
one with a global neighborhood, and other one with a local neighborhood. According to the global
neighborhood, each particle moves towards its best previous position and towards the best particle in
the whole swarm, called gbest model. If binary values (0 or 1) are used as particle dimensions it is
called as Binary Particle Swarm Optimization (BPSO).

Even though we might find a good set of parameters for BPSO, Iterative Improvement search is still
worth while trying to improve the performance of the solution. Local search algorithms move from
solution to solution in the space of candidate solutions (the search space) by applying local changes,
until a solution deemed optimal is found or a time bound is elapsed and helps to escape from local
minima. Iterative Improvement search is one such local search algorithm which helps in improving
solution efficiency.

(a) Initialization

In PSO algorithm, each member is called particle and each one represents one particular solution to
the given problem. Group of particles is called as swarm.

(i) Initialization of particle

In multi level inventory problems each particle is represented by a matrix of m×n. where m represents
the number of items involved in the problem, represents time buckets. And particle representation is
Xpt id .

Here p= particle number.
t= iteration number (represents row number)
i= item number (represents column number)
d= time period.

Example:
7 items and 6 periodic demands are involved in the problem then particle is represented by 7×6 matrix.
As it is initial generation, all dimensions of particle are assigned to “0” or “1” randomly.

If R > 0.5 then Xpt id =1.
Else Xpt id =0.

Here R represents a random number.































100011
100101
000001
000001
100101
000001
100101

pt
idXParticle

Figure. 1 Particle dimension representation
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Xpt id represents pth particle of tth iteration and swarm contains p different particles like this.

(ii) According to particle dimensions ,fitness need to be calculated for each and every particle, i.e.
fitness(Xpt id).

(iii) Initialization of particle velocities

After defining particle dimensions particle velocities needs to be calculated . for initial generation
velocity calculation can be done using following formula

Vp0 id =Vmini+ (Vmaxi-Vmini)*R

here [Vmaxi, Vmini]=[-x,x],here x is an integer.

Ex: let [Vmaxi, Vmini]=[-5,5]
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Figure. 2 Particle velocity representation

(b) Updating Particle best and global best

After defining swarm i.e. all particle dimensions, fitness needs to be calculated. After calculating
fitness value we need to assign global best value to the particle containing best fitness value. As it is
the initial generation all particle best(PBp,k id) values are equal to particle values.

Here GBt id represents global best dimensions of tth iteration .

Here PBpt id represents particle best dimensions of pth particle tth iteration.

(c)Updating parameters for next generations

(i)Updating velocity of particle (Vpt id):
New velocity = Vpt id=P (Vp, t-1 id +∆Vp, t-1 id)
∆Vp, t-1 id = c1 R1 (PBp,t-1 id - Xp,t-1 id)+ c2 R2(GBt-1 id - Xp,t-1 id)

C1, C2 are social and cognitive parameters, R1& R2 are uniform random numbers between (0, 1)

Here Piece wise linear function [P (Vpt id)]
P (Vpt id) = Vmaxi if Vpt id > Vmaxi

=Vpt id if |Vpt id| Vmaxi
=Vmini if Vpt id < Vmini

(ii)Updating position (Xpt id) by sigmoid function:
Xpt id = 1 if R< S (Vpt id)

= 0 otherwise
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Sigmoid function S (Vpt id):

This function forces velocity values to be in the limits of ‘0’ to ‘1’.It helps to update next generation
Xpk id values.

S (Vpt id) =

(iii)Updating particle best and global best (PBp,t i,d ,GBt i,d)

After each and every iteration update particle best and global best values according to the fitness
values of particles in the newly generated swarm.

(d)Iterative Improvement Search Algorithm

Iterative Improvement Search Algorithm is a local search that moves from one solution S to another S’
according to some neighborhood structure. Search procedure usually consists of the following steps.

(i) Initialization: Choose an initial schedule S to be the current solution and compute the value of the
objective function F(S).

(ii) Neighbour Generation: Select a neighbour S’ of the current solution S and compute F(S’).

(iii) Acceptance Test: Iterative Improvement allows only strict improvement in the objective function
value. It accepts a new solution S’ only if F(S’) <F(S), where S is the current solution. Often instead of
accepting the first neighbour with the value of the objective function smaller than F(S) for the current
solution, the algorithm constructs all neighbours (or a given number of Neighbours) and selects the
best one.

(iv) Update particle best and global best values.

(e) Termination:

If the number of iterations reaches a predetermined value, called maximum number of iterations then
stop searching, other wise go to (c) and repeat the procedure.

Pseudo code of IIBPSO is given in Figure3.
STEP1: Initialization phase

Initialize swarm
Assign velocities to all paticle
Fitness calculation
Particle best and global best

STEP2: Iteration phase with IIBPSO search
for (i=0; i<number of iterations; i++)
{

Update particles velocities
Update dimensions of particles
Calculate Fitness values
Update Particle and global best values
Iterative improvement local search
Update Particle and global best

}
STEP3: Iteration phase by local search for global best value
for (i=0; i<number of iterations; i++)
{
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Iterative improvement local search
}
Figure 3. Pseudo code of IIBPSO algorithm

4. Numerical Example:

A lot sizing problem of 7 items and 6 periods is taken from Jinxing Xie, Jiefang which is a general
capacitated lot sizing problem (2002), and this example is also taken for the comparision with other
problem considered in the paper.

M.Fatih Tasgetiren and Yun-Chia Liang (2003) say that if population size (number of particles in
swarm) is at least double the number of periods in the planning horizon performance would be better.
According to Yuhui Shi (2004), PSO with minimum population size 5 gives better performance.

But for the sake of convenience swarm size i.e. population size is taken as 3 in numerical example,
even though all the problems are solved with population size of 40.

Step1: Swarm contains 3 particles, each of size 7×6
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Step2: As it is first generation assign all particle values to particle best, and best fitness particle
dimensions to global best value.
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Step3: Update Velocity using standard procedure of Binary particle swarm optimization
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Update particle dimension matrix according new velocity matrix of particle.

10300

000001
000001
001001
000101
000001
001001
001001

1 





























 FitnessparticleInput

As particle 1 fitness value is improved, so first particles, particle best (PB1) value will be updated with
current particle data. If fitness is not improved then particle best value will remain same.

Like this update particle best and global best values will be updated for all particles in the according to
fitness values.

Step4: Repeat this procedure until iteration number k < max iteration.

Local Search:

9820

000001
000001
001001
000101
000001
001001
000101

000001
000001
001001
000101
000001
001001
001001





























































 FitnessparticleNewparticleInput

Fitness value of new particle is improved (10300>9820). As the solution is improved old particle (i.e.
input particle) will be replaced with a new particle.

Step5:After this go to step2 and repeat the procedure. If number of iterations are reached stop

5. Problem Illustration:

Problems shown in Fig. 4a, 4b and 4c as M×T are taken for modeling and simulation of CMIMLLS
problem. Here M represents the total number of items involved in the BOM structure and T represents
the number of periods. Table 1 represents different costs involved and Table 2a,2b and 2c carries
information regarding demand and available capacity. Figure 4a is a BOM of single product where it
contains 50×12 structure with 50 different items, 12 periods in 9 levels, Figure 4b is a BOM of a multi
product contains 39×12 structure with 39 different items, 12 periods in 6 levels and Figure 4c is a
BOM of a multi product contains 75×36 structure with 75 different items, 36 periods in 10 levels.
Table 1 gives the information regarding the setup cost (S.C.) and holding costs (H.C.) of different
items of 50 ×12, 39×12 and 75×36 problems. Tables 2a, 2b and 2c give the information regarding
demand and availability conditions.
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Figure.4a Product structures of 50×12 single product problem

Figure.4b Product structures of 39×12 multi product problem

Figure.4c Product structures of 39×12 multi product problem
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Table 1. Setup and Holding costs of different items in 50×12, 39×12,75×36 structures

S.N 50*12
problem

39*12
problem

75*36
problem

S.N 50*12
problem

39*12
problem

75*36
problem

S.
N

75*36
problem

H.C S.C H.C S.C H.C S.C H.C S.C H.C S.C H.C S.C H.C S.C

1 97.83 780 40.08 490 50 410 26 7.53 540 1.45 580 30 580 51 18 800

2 45.19 200 35.27 450 49 450 27 4.36 160 3.63 650 31 620 52 17 410

3 43.82 590 59.66 90 50 430 28 18.52 480 4.35 450 30 610 53 16 350

4 5.82 710 25.42 140 48 420 29 5.81 410 3.29 820 30 490 54 15 320

5 26.04 890 10.42 880 47.2 250 30 1.93 140 5.04 620 30 300 55 14 280

6 18.87 610 22.64 440 46 300 31 6.71 390 2.53 580 29 200 56 13 280

7 27.03 920 22.31 70 42 500 32 15.35 370 3.3 340 29 200 57 12 180

8 15.64 210 19.53 430 42.5 800 33 4.36 520 0.61 340 25 100 58 11 680

9 2.67 490 1.34 930 40 400 34 3.28 700 2.52 80 25 120 59 10 190

10 1.86 920 25.12 650 40.5 500 35 6.38 160 4.83 690 25 300 60 9 100

11 23.5 520 9.46 740 37 200 36 3.47 290 3.44 430 27 400 61 8 480

12 12.59 540 17.48 680 36 330 37 1.97 420 0.91 60 27 200 62 7 200

13 25.13 510 4.32 800 45 480 38 1.76 160 2.64 760 25 800 63 6 270

14 16.42 500 14.28 220 40 450 39 6.41 450 2.65 180 25 100 64 5 600

15 0.84 300 2.56 850 37 380 40 7.17 340 - - 25 250 65 4 210

16 1.02 450 10.07 400 40 200 41 2.97 750 - - 27 450 66 3 700

17 0.62 440 4.59 650 36 100 42 0.25 140 - - 28 100 67 3 100

18 23.71 510 7.13 860 35 100 43 3.22 430 - - 26 200 68 3 200

19 15.32 910 8.82 850 35 120 44 1.85 890 - - 25 800 69 3 100

20 20.58 830 10.6 670 34 280 45 3.84 610 - - 26 100 70 3 150

21 8.71 730 6.02 370 33 270 46 0.41 860 - - 24 500 71 3 200

22 3.14 850 2.78 360 35 290 47 0.37 860 - - 24 480 72 2 100

23 0.94 450 2.95 310 35 320 48 3.84 350 - - 22 250 73 2 200

24 13.02 370 9.32 440 33 380 49 3.95 610 - - 21 600 74 2 100

25 7.34 390 0.31 590 30 560 50 1.63 350 - - 19 100 75 1 100

H.C.=Holding Cost , S.C=Setup Cost

Table 2a. Demand and Availability of end product in 50×12 problem

Period 1 2 3 4 5 6 7 8 9 10 11 12
Demand 15 5 15 110 65 165 125 25 90 15 140 115
Available 1000 2000 1000 0 5000 1000 0 500 800 500 1000 200
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Table 2b. Demand and Availability of end products in 39×12 problem

Table 2c. Demand and Availability of end products in 75×36 problem

period 1 2 3 4 5 6 7 8 9 10 11 12
Item1 10 100 10 130 115 150 70 10 65 70 165 125
available 1500 2000 0 1000 800 5000 0 800 500 1000 2000 200
Item2 175 15 85 90 85 90 75 150 75 10 150 15
available 0 1000 2000 1000 900 0 800 1200 500 500 1000 100
Item3 135 165 15 105 25 120 50 60 5 140 60 10
available 1000 2000 900 800 0 1000 1200 300 500 800 100 100

period 1 2 3 4 5 6 7 8 9 10 11 12
Item1 10 100 10 10 70 10 20 10 10 50 10 70
available ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
Item2 20 10 10 10 100 20 10 10 10 320 10 100
available ∞ ∞ 0 ∞ 5000 ∞ ∞ ∞ ∞ ∞ ∞ ∞
Item3 30 10 10 100 10 10 20 10 40 100 10 10
available ∞ ∞ ∞ ∞ ∞ 5000 ∞ ∞ ∞ ∞ ∞ ∞
Item4 40 10 10 30 10 10 10 10 100 10 10 120
available ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
period 13 14 15 16 17 18 19 20 21 22 23 24
Item1 10 100 10 60 10 10 50 10 10 10 30 10
available ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞
Item2 10 20 10 170 10 10 50 10 10 10 210 10
available ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Item3 10 180 10 10 10 10 60 10 10 10 10 10
available ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Item4 10 10 10 110 10 10 30 10 410 10 20 10
available ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
period 25 26 27 28 29 30 31 32 33 34 35 36
Item1 20 10 90 10 10 310 10 250 10 10 90 10
available ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ 1000 ∞ ∞
Item2 10 10 10 1000 10 10 10 10 10 10 80 10
available ∞ ∞ ∞ ∞ 800 0 ∞ ∞ 500 ∞ ∞ ∞
Item3 600 10 100 10 10 10 10 10 600 10 10 10
available ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ 0 ∞ ∞ ∞
Item4 50 10 10 10 800 10 10 10 90 10 10 10
available ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
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6. Results:

All capacitated large size lot sizing problems are coded in c language and run on Intel® Core™ Duo
processors 667 MHz Front Side Bus and 2M Smart L2 Cache with 2GB RAM.

The authors have solved all the test problems using BGA, IIBGA, and BPSO, IIBPSO, and results are
compared among them. A lot sizing problem of 7 items and 6 periods which is taken from Jinxing Xie,
Jiefang (2002), is also taken for the comparison.

Following tables 3, 5, 7 and figures 5, 6, 7 show the comparison of binary BGA, IIBGA, BPSO and
IIBPSO algorithms at different iterations of different problems under consideration. Table 4,6,8,9
gives the information about the optimum values obtained for different test problems for different
programming techniques. Table10 gives the percentage of improvement of solutions of BGA, BPSO,
IIBPSO techniques when compared to BGA technique solution for different problems under
consideration.

Table 3. comparison 50×12 problem results among BGA, IIBGA,BPSO and IIBPSO

50×12
Iteration No. BGA IIBGA BPSO IIBPSO

5 386,785.09 380,765.30 280,295.00 250295.00
25 380,891.31 352114.59 243,797.00 241009.15
50 350,503.75 330138.87 203,956.09 200037.17
100 322,136.16 321142.15 193,128.11 199121.89
200 279,484.72 290477.29 192,017.59 195192.04
500 249,875.41 250132.65 189,013.95 185013.09
1,000 234,587.08 230513.19 186,579.11 182599.11
2,000 234,587.08 232187.12 186,543.84 183450.08
5,000 234,489.03 223154.89 185,042.16 174057.32
10,000 229,484.6 219803.29 184,629.19 173753.29
15,000 229,484.6 214040.12 181,685.31 173753.29
20,000 204,240.90 213108.00 181,685.31 173753.29

30,000 204,140.90 191617.40 181,685.31 173753.29
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Figure. 5 BGA, IIBGA, BPSO, IIBPSO comparison at different iterations

Table 4. Comparison 50×12 problem optimum results among BGA, IIBGA, BPSO and IIBPSO

50×12
BGA IIBGA BPSO IIBPSO

204,140.90 191617.40 181,685.31 173753.29

Table 5. Comparison 39×12 problem results among BGA,IIBGA, BPSO and IIBPSO

39×12
Iteration BGA IIBGA BPSO IIBPSO

5 377,421.19 350605.65 246,901.17 246,901.17
25 327,867.12 239426.79 217,583.65 213605.76
50 242,463.20 204744.77 204,084.98 197578.04
100 221,525.29 178650.31 202,884.17 191770.14
200 199,022.79 178346.06 194,724.84 191770.14
500 197,410.34 178244.00 193,219.70 186117.70
1,000 197,410.34 177609.65 185,691.15 142889.60
2,000 197,410.34 177609.65 185,691.15 142889.60
5,000 197,410.34 177609.65 172,684.78 142889.60
10,000 197,410.34 177609.65 172,682.56 142889.60
15,000 197,410.34 177609.65 172,682.56 142889.60
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Figure. 6 BGA, IIBGA, BPSO, IIBPSO comparison at different iterations

Table 6. Comparison 39×12 problem optimum results among BGA, IIBGA, BPSO and IIBPSO

39×12
BGA IIBGA BPSO IIBPSO

197,410.34 177609.65 172,682.56 142889.60

Table 7. comparison 75×36 problem results among BGA,IIBGA, BPSO and IIBPSO

75×36
Iter No. BGA IIBGA BPSO IIBPSO

5 152174144 151074134 89866320 89866320

25 145240592 143150594 86317160 80226251

50 131999600 128899511 79341128 77312117

100 108485416 106374426 71873080 61752171

200 99614824 99919883 60409328 60409328

500 89866320 99614824 50344516 47817140

1,000 86317160 54844216 47819130 39071648

5,000 65511652 50344516 43816120 36459912

10,000 54344516 50344516 43816120 36291480

20,000 54344516 47444516 41817140 36205080

30,000 54344516 47344516 41817140 36205080
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Figure.7 BGA, IIBGA, BPSO, IIBPSO comparison at different iterations

Table 8. Comparison 75×36 problem optimum results among BGA, IIBGA, BPSO and IIBPSO

75×36
BGA IIBGA BPSO IIBPSO

54344516 47344516 41817140 36205080

Table 9. Comparison 7×6, 50×12, 39×12, 75×36 problems optimum results among BGA, IIBGA,
BPSO and IIBPSO

BGA
Total cost

IIBGA
Total cost

BPSO
Total cost

IIBPSO
Total cost

7×6 9245 8320 8320 8,320

50X12 204,140.90 1,91,617.40 1,81,685.31 1,73,753.29

39X12 197,410.34 1,77,609.65 1,72,682.56 1,42,889.60

75X36 54,344,516 47,344,516 41,817,140 36,205,080

Table 10. Percentage improvement in solution when compared to BGA Solution

IIBGA
(% of improvement)

BPSO
(% of improvement)

IIBPSO
(% of improvement)

7×6 10 10 10

50X12 6.13 11 16

39X12 10 12.5 28

75X36 12.8 23.06 33.38
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Conclusion:

1. An attempt is successfully made to develop Binary Particle Swarm Optimization (BPSO) and
hybrid Binary Particle Swarm Optimization algorithms to address any kind of Lot Sizing problems
that arise in a typical manufacturing industry. Multi level Multi item capacitated Lot sizing Problem
for general product structure is the generalized lot sizing problem such as any combination of
problems that arise in Lot Sizing. The proposed algorithm can be applied to any type of production
system and any type of product structures.

To the best of the knowledge of the author such works have not been published sofars in contemporary
literature. And this may be a first work presenting the solution of Multi level Multi item capacitated
Lot sizing Problems by using HBGA and BPSO effectively.

2. BPSO and HBPSO techniques have been successfully employed to model and simulate all sorts of
lot sizing problems such as single item single level, single item multi level, multi level multi item,
uncapacitated and capacitated problems under consideration to minimize total cost.

3. The solutions obtained by HBPSO is unique and more efficient in solving small ,medium and large
size Lot sizing problems. Thus HBPSO proved to be a robust solution method for Lot sizing problems
in general. Computational experience show that HPSO methodology can be implemented as a separate
optimization module for solving all types of lot sizing problems in any MRP-II based package. Further
this Lot Sizing Problem can be integrated with Scheduling problems to get the best result for lot
sizing –scheduling problems.
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