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Abstract. In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in 

the initial phase of its work were carried out based on experimental studies and the data resulting from them. The 

calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with 

a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. 

In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic 

surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The 

calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model 

of the piston was created in this program based on a real component, in order to enable the calculations and analysis 

of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine 

speed n=4250 min-1 and engine load λ=1.69 was carried out. 

 

1. Introduction 

At present, still increasing demands both in terms of exhaust emissions and fuel economy, as well as 

the possibility to obtain high unit power are made in relation to modern diesel engines. Compliance 

with these requirements is possible, among others, due to a better understanding of the phenomena 

occurring inside the internal combustion engine, as well as development of various models for their 

subsequent multi parameter evaluation. Increasing engine power is accompanied by – apart from an 

increase in the mechanical loads – also an increase in thermal loads. These loads have a significant 

influence on such features of the engine as the exhaust blow through to the crankcase, the engine oil 

wear or the level of pollutants emitted by the engine to the atmosphere. Particularly a piston 

experiencing deformations variable in the time is exposed to these effects. Already at the stage of 

preliminary design work, knowledge on the thermal loads the piston will be subjected to is required. 

Such information can be obtained by suitable modelling of the temperature distribution in the studied 

cross-sections of the piston’s characteristic surfaces. Design works and model tests are very expensive 

and prolonged. However, application of mathematical models and suitable computer techniques allows 

for determining the temperature distribution for different materials, sizes and shapes of the piston 

[12,13,14,15]. Subsequent analysis of this information helps to formulate initial design assumptions, 

as well as to modernize existing solutions for operation of the engine at various speeds and loads. Very 

good results in studies on thermal stresses of the piston are provided by application of the finite 

element method. However, in order to carry out any numerical calculations, some assumptions and use 

of empirical methods of data gathering for each of the analysed operation conditions of the engine are 

needed. 
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2. Analysis of the influence of selected parameters on the thermal loads of the piston  

Thermal loads of components of a combustion chamber engine are the main factor limiting the 

performance and durability of Diesel engines [1]. The most loaded elements are the piston head and 

the surface of the engine cylinder head. Exceeding the permitted temperature of the piston causes 

various types of material losses and leads to an excessive increase in the diameter of the piston, 

resulting in its galling (Figure 1). In turn, temperature fluctuations may cause formation of cracks, 

leading to development of leakages and even preventing further work of the engine.  

 

 

Figure 1. Traces of galling of the guide surface of a piston. 

The heat effect during the engine operation causes reversible and irreversible dimensional changes in 

the piston. This is related closely with the suitable shape of the piston which determines the value of 

the clearance of the piston-cylinder assembly. The clearance of the piston in the cylinder has a 

significant influence on the tightness of the combustion chamber and thus on the size of the charge 

losses. This is particularly important for Diesel engines, where the loss of charge during compression 

reduces the real excess air ratio in the engine combustion chamber. Moreover, an improper clearance 

of the piston-cylinder assembly also has a negative impact on oil consumption, the capability to start 

the engine, and the noise. The piston temperature is significantly affected by the proper position of 

engine rings. From 60 to 80% of the heat acquired by the piston from the working medium is returned 

through the rings into the cylinder. Requirements for the location of the rings are incompatible. In 

order to reduce the thermal loads of the rings, they should be located as far away from the piston head 

as possible, and in order to reduce the thermal loads of the piston, they must be placed possibly high. 

For all engine speeds and loads, a distinct reduction in the piston temperature is achieved in all of its 

points by reducing the distance between the ring and the piston head. Changing the number and height 

of rings also causes a change in the piston temperature due to changes in the surface areas via which 

the heat exchange occurs. 

Apart from the design conditions, also the service conditions of an engine affect the thermal loads of 

pistons [2,3]. The conditions of the engine operation include a change in the effective pressure. 

Assuming that mechanical efficiency is constant, an increase in the average effective pressure is 

equivalent to a higher heat emission, which leads to an increase in the piston temperature. The 

influence of the increase in the average effective pressure on unit heat flux for the parameter 

characterizing the heat load of the cylinder result from the following dependence:  
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where: 

b - coefficient of the amount of strokes (for four stroke b=2) 

η - fill coefficient 

cm - average velocity of the piston [m/s] 

D - diameter of the cylinder [dm] 

pd - pressure at the inlet valve [MPa] 

Td - temperature at the inlet valve [K] 

pe - average effective pressure [MPa] 

ge - actual fuel consumption [g/kWh] 

T0 - ambient temperature (T0=293 K) 

 

The increase in the average effective pressure of a Diesel engine is achieved by injection of a higher 

dose of fuel per working cycle into a cylinder. Thus, a higher amount of heat is transferred to the 

piston while reducing the excess air ratio. The lower the excess air ratio λ, the larger relative amount 

of heat may be released from the fuel in the cylinder. The temperature changes are analogous to the 

changes in the engine power. Both the mixture enrichment and impoverishment cause a drop in 

temperature of the piston. With a too rich mixture, a large part of the fuel is not burned. A lean 

mixture burns slowly, reducing the combustion temperature despite the fact that as a result of chronic 

combustion, the temperature of the exhaust gas increases. In a Diesel engine, an increase in the engine 

load leads to a decrease in the excess air ratio λ in the result of supplying more fuel. It leads to an 

increase in the amount of heat released in the engine’s combustion chamber and in the temperature of 

the elements surrounding it, including the piston (Figure 2) [6].  

 

 

Figure 2. Temperature dependence of the piston vs. the excess air ratio for a self-ignition 

engine: 1 - engine with a pre-chamber; 2, 3 and 4 - direct injection engines. 

 

For comparison, Figures 3 and 4 present modelled piston temperature distributions in a turbocharged 

Diesel engine with a capacity of about 2300 cm3 with a direct fuel injection to the combustion 

chamber and engine power of 85 kW, for two loads corresponding to λ = 3.08 and λ = 1.66 at the 

engine speed of 2000 min-1 after 10 and 30 seconds of its work from the start up. Further information 

about boundary conditions and modelling of the temperature distribution in the piston can be found in 

the literature [8,9]. 
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The temperature distribution of the piston with two different loads and 

engine speed n=2000 min-1

Time: 10 seconds

λ= 3,08                                      λ= 1,66

 

Figure 3. The temperature distribution in the piston for two loads of a turbocharged Diesel engine  

after 10 seconds.  

 

 

The temperature distribution of the piston with two different loads and 

engine speed n=2000 min-1

Time: 30 seconds

λ= 3,08                                      λ= 1,66

 

Figure 4. The temperature distribution in the piston for two loads of a turbocharged Diesel engine 

after 30 seconds. 
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Both the calculations and the research show that the temperature distribution as a function of time has 

a similar course for both loads. However, for a lower load at the same rotational speed of the engine, 

the temperature values are lower. Another parameter affecting the thermal load on the piston is the 

engine speed. The influence of this parameter is quite complicated. On the one hand, an increase in the 

engine speed is equivalent to an increase in the frequency of combustion in the cylinder, increasing the 

amount of the heat in the combustion chamber. On the other hand, it affects the change in the engine 

filling efficiency, and thus the course of the combustion process itself. In a Diesel engine, the amount 

of fuel being provided into the cylinder does not depend on the engine filling efficiency with air, 

because for all rotational speeds, the engine sucks in a different but maximum value of the air mass. 

The amount of the injected fuel depends on the curve of dosing characteristic of the injection pump 

and on the excess air ratio which depends both on the amount of intake air as well as injected fuel. 

Figure 5 shows the course of the calculated maximum values of the piston head surface temperature 

during a 60-second operation of a turbocharged Diesel engine, calculated counted from the engine 

start for its two rotational speeds n = 2000 min-1 and n = 4250 min-1.  

 

Figure 5. The course of maximum temperature on the surface of the piston head for two engine 

speeds.  
 

Based on the calculations, it was found that an almost twofold increase in the rotational speed of a 

turbocharged Diesel engine for the same load causes lower thermal loads of the piston head [10]. This 

is due to a higher rate of heat exchange between the piston and its environment, in comparison with 

the amount of heat generated in the combustion chamber of the engine.  

 

3. Modelling of thermal stresses of an engine piston  

After starting the engine, the piston heats up until it reaches a state of equilibrium, which results from the 

balance between the heat taken from hot gases in the combustion chamber and transformed into useful work, 

and the heat transferred to the environment by, among others, the coolant and the combustion gases. 

Determination of thermal stresses of the piston by means of modelling required to assume equations and 

mathematical expressions for the calculations, describing the process of heat exchange in such a way in order 

for the model to reflect the actual processes occurring on the characteristic surfaces. This model was created 

for the piston on the basis of the differential equation of the heat flow in solids. 
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where: 

a - coefficient of temperature compensation 

cp - specific heat capacity at constant pressure [J/kg K] 

ρ - density [kg/m3] 

T - temperature [K] 

qv - volumetric efficiency of the internal heat source [W/m3] 

λ - thermal conductivity [W/mK] 

 

The numerical calculations of the stresses were performed by means of the COSMOS/M program based on 

the knowledge of the temperature distribution for assumed operating conditions of the studied engine. In the 

program an actual three-dimensional discrete geometric model of the piston was created based on the real 

component (Figure 6) [7].  

      a)                                   b) 

 
 

Figure 6. Geometric model of the piston: a) real component b) discrete model. 

In the model, 16 characteristic the surfaces of the piston were distinguished, for which the temperature 

distributions and specific values of type III boundary conditions (Fourier conditions) were determined. These 

conditions determine the temperature of the medium surrounding the piston and the heat transfer coefficients 

of the characteristic surfaces. These surfaces are shown in Figure 7 [4].  

               

        

 

 

 

 

 

 

Figure 7. Characteristic of surfaces of the piston.  

Surface of: 

1 – piston head 

2 – side of the piston over I ring 

3 – the top surface of the ring groove I  

4 – the groove bottom of the ring I 

5 – the lower surface of the ring groove I 

6 – between the rings I and II 

7 – the top surface of ring groove II 

8 – the groove bottom of the ring II 

9 – the lower surface of ring groove II 

10 – between the rings II and III 

11 – the top surface of the ring groove III 

12 – the groove bottom of the ring III 

13 – the lower surface of the ring groove III 

14 – the guide surface of the piston 

15 – the internal surface of the piston 

16 – the contact surface of the piston bolt 
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For numerical calculations of the thermal stresses of the piston in the state of a non-stationary heat 

flow, the material data of the AK 12 silumin were used. Due to the possibility to use the temperature 

curves in the COSMOS/M program, variable value of the thermal conductivity coefficient of the 

material as a function of temperature was accepted (fig. 8), among others.  

                

Figure 8. The graph of the thermal conductivity coefficient of the AK 12 alloy as a function of 

temperature  

For individual piston surfaces, conditions of heat exchange equivalent to those in the combustion 

chamber for each cycle of the engine were assumed in the calculations. Based on the recorded 

indicator diagrams and the calculated total heat transfer coefficient, the temperature of the working 

medium surrounding the combustion chamber and the values of the heat transfer coefficient for the 

engine load of λ = 1.69 and speed of n = 4250 min-1 were determined [5]. Figures 9 and 10 show the 

exemplary values of thermal stresses of the piston during a non-stationary heat flow, corresponding to 

10 and 20 seconds of engine operation measured from its start-up. 

 

 

           

Figure 9. Thermal stresses of the piston after 10               Figure 9. Thermal stresses of the piston after 10 

seconds - front view.                                                              seconds - back view. 
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Figure 10. Thermal stresses of the piston after 20             Figure 10. Thermal stresses of the piston after 20 

seconds - front view.                                                              seconds - back view.  
 

The calculations carried out indicate that thermal stresses of the piston were increased during the warm-up of 

the engine. After 10 seconds of the engine operation, the highest thermal stresses occurred only on a small 

surface of the bottom groove of the third ring. However, after 20 seconds, the highest thermal stresses of the 

piston could be observed on the upper surface of the groove of the first ring and they included also the bottom 

side surface of the piston above this ring.  

 

4. Conclusions  
Based on the preliminary results of the calculations, it can be concluded that maximum values of thermal 

stresses of the piston are found mainly in the ring portion and on the surface of the piston head. On the other 

hand, the lowest values are found in the guide part. The obtained maximum values of thermal stresses for the 

engine speed of n = 4250 min-1 and λ = 1.69 did not exceed 12 MPa. In the state of a non-stationary heat flow, 

distributions of thermal stresses on the individual surfaces of the piston different in the time were obtained. 

According to the Authors, they represent, together with mechanical stresses, important factors in the design 

and subsequent operation of the piston for a specified engine kind and type. However, the calculations should 

be verified experimentally, to enable obtaining results of numerical calculations which would correspond to 

the real thermal stresses in the engine during warming up in the future [11]. 
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