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Abstract. The name of amorphous metals is assigned to metals that have a non-crystalline 
structure, but they are also very similar to glass if we look into their properties. A very 
distinguished feature is the fact that amorphous metals, also known as metallic glasses, show a 
good electrical conductivity. The extension of the limit state criteria for different materials 
makes this type of alloy a choice to validate the new criterions. Using a new criterion 
developed for biaxial and triaxial state of stress, the results are investigated in order to 
determine the applicability of the mathematical model for these amorphous metals. Especially 
for brittle materials, it is extremely important to find suitable fracture criterion. Mohr-Coulomb 
criterion, which is permitting a linear failure envelope, is often used for very brittle materials. 
But for metallic glasses this criterion is not consistent with the experimental determinations. 
For metallic glasses, and other high-strength materials, Rui Tao Qu and Zhe Feng Zhang 
proposed a failure envelope modeling with an ellipse in σ-τ coordinates. In this paper this 
model is being developed for principal stresses space. It is also proposed a method for 
transforming σ-τ coordinates in principal stresses coordinates and the theoretical results are 
consistent with the experimental ones. 

1. Introduction 
In the past 30 years, there have been developed new high-strength materials such as amorphous metals 
(metallic glasses), nanocrystalline metals, and advanced technical ceramics.  

All of these are brittle materials, which show a sudden failure, which in some cases can be 
catastrophic for structures. In particular, for this class of materials is extremely important to find 
fracture criterions that are able to predict critical loading conditions for complex state of stress. 

First paper about a metallic glass has been published in 1960 [1] and presented a amorphous 
material called Au75Si25, produced by Caltech. These materials have a high importance for both 
scientific and commercial use due to their properties [2]-[4]. 

These types of metallic glasses are a category of alloys that presents a higher tensile yield strength, 
which also means a higher elastic strain limit by comparison with crystalline materials [2]. However, 
the experiments show a lower limit concerning their ductility. 

Compared to other limit stress state theories, Mohr-Coulomb theory is more general and can be 
applied both to materials with ductile behavior, and brittle behavior.  

Usually, for the materials that have very brittle behavior, a straight line approximates the limit 
stress state envelope. For this modeling, equivalent stress is calculated using the following equation: 

 1 3eq K       (1) 
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and K is a constant of the material, expressed as the ratio of tensile limit stress and compression limit 
stress. 

For ductile materials ߪ௅் ൌ ௅஼ߪ ܭ , ൌ 1 and Mohr-Coulomb theory is reduced to Tresca theory. 
Tao R. and Feng Z. showed that the Mohr-Coulomb linear theory does not give satisfactory results for 
metallic glasses. For this reason, the authors proposed the modeling of the limit stress state envelope 
with an ellipse in σ-τ coordinates.  

This modeling was validated by experimental determinations for the Zr65Fe5Al10Cu20 metallic glass 
[5]. 

2. Elliptic failure envelope 
Starting from the elliptical envelope equation in the coordinate system σ-τ (figure 1), in the paper [6] 
the authors expressed the ellipse equation depending on the principal stresses: 
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Figure 1. Mohr's limit stress state envelope (a) and its approximations with an arc of ellipse (b). 

3. The transformation of coordinates 
By cutting out a plate of constant thickness, that is in biaxial state of stress, an infinitesimal triangular 
prism (figure 2) and by doing the forces equilibrium, is obtained: 
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  (5) 

Mohr's circle equation is obtained by removing the angle θ from above relations. 

 

Figure 2. Infinitesimal triangular prism, cropped from a plate in biaxial stress state. 

 
Knowing the coordinates of a point in σ-τ space, the question arises around the whereabouts of the 

coordinates in principal stresses space. As shown from the above equations, for this operation it is 
necessary to know the angle θ. If the angle is not known, the problem is solved for the elliptical 
envelope in the following. 
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Given the point A(σ0, τ0), with known coordinates, it is assumed without restricting the generality 
that the point A is at the interior of the failure envelope, where the safety factor is c = 1. It is placed on 
an ellipse concentric with the failure envelope. On this ellipse (drawn with dashed lines in figure 3), 
the safety factor is c> 1. For reasons of symmetry, of the two ellipses we retained only a quarter 
(figure 4). 

The equation of the ellipse for which c=1 is: 
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The ellipse containing point A(σ0,τ0) is likewise with the initial ellipse, and it is described by the 
following equation: 
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where k is determined as imposing A(σ0,τ0) to belong to the ellipse (7): 
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hence 
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Figure 3. Limit stress state ellipse (full line) and concentric ellipse containing point A with known 
coordinates. 
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Figure 4. Due to symmetry conditions, it is retained only a quarter of the system. 

 
Figure 5 shows a quarter of the ellipse passing through A and Mohr's semicircle is tangent to the 

ellipse at this point. In this figure are noted: 
 Q is center circle Q(a,0); 
 (t) is the common tangent to the circle and ellipse; 
 (n) is the QA line, which is normal to the tangent in point A (t ٣ n). 

 

Figure 5. Ellipse quarter and Mohr semicircle, which are tangent in point A. 

 
The equation of the tangent line to the ellipse in A is: 

 0 0
2 2

1
A A

 
 

    (11) 

7th International Conference on Advanced Concepts in Mechanical Engineering IOP Publishing
IOP Conf. Series: Materials Science and Engineering 147 (2016) 012100 doi:10.1088/1757-899X/147/1/012100

5



 
 
 
 
 
 

hence 
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It writes the slope of the line (t): 
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Since the lines (t) and (n) are mutually perpendicular, their slopes must meet the condition: 

 ( ) ( ) 1t nt n m m      (14) 

Using this property, from equations (13) and (14), is written the slope for the line (n): 
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The equation of the line (n) is: 

  0 0nm        (16) 

The centre of the circle, Q it is determined at the intersection of the Oσ axis with the line (n): 
{Q}=Oσ ∩ (n). Replacing point coordinates Q (σ=a and τ=0) in equation (16), results: 

  2
0 1 STa k    (17) 

where kST  is the report between the semi-major and semi-minor axis of the ellipse: 
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Abscissa of the Mohr circle centre can be written according to the principal stresses (figure 5): 
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OAD triangle is used to determine the radius R = QA with Pythagorean theorem: 

  2 2
0 0R a      (20) 

Results from equations (18) and (20): 
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Mohr circle radius can be expressed according to the principal stresses: 

 1 3
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R
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From equations (17), (20), (21) and (22), depending on the coordinates of point A we have the 
principal stresses: 
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and 
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Metallic glasses failure is dictated by shear and located on a very thin strip. The angle between this 
band and the load is usually much higher than 45° for tensile stress or slightly less than 45° at 
compression for the metallic glass strips. This angle is half of that formatted between normal (n) and 
Oσ axis (figure 6). The Mohr-Coulomb model with elliptical envelope can predict it and this 
represents a major advantage to the modified theory [5]. 

Conversely, if known coordinates in principal stresses space, the failure angle θ can be determined. 
For the tensile situation where σ3=0 σ1=σLT. Substituting in equations (23) and (24), we determine the 
coordinates of the tangent point σ0 and τ0. The failure angle θ can be established with the relation: 
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  (25) 

 

Figure 6. Failure angle for metallic glasses strips under tensile state if stress (elliptic envelope). 

 
The ratio in equation (23) and (24) has the following geometric significance (figure 3): 
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4. Verifications  with experimental data 
Metallic glasses are brittle materials. However, they have the tensile stress and compressive stress 
equal in module, which is in fact a feature of classic ductile materials. Table 1 presents the mechanical 
properties of metallic glass Zr65Fe5Al10Cu20 and the material coefficients, where σy is 2.231 GPa. 
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Table 1. Experimental data [5] and values for K and kST
A for Zr65Fe5Al10Cu20 metallic glass. 

τ0 σ0 
kST

A K 
[GPa] [GPa] 

0.314 1.988 0.194 0.976 
0.468 1.748 0.289 0.976 
0.596 1.700 0.368 0.976 
0.665 1.477 0.410 0.976 
0.734 1.280 0.453 0.976 
0.748 1.088 0.461 0.976 
0.785 0.959 0.484 0.976 
0.822 0.696 0.508 0.976 
0.849 0.610 0.524 0.976 
0.878 0.513 0.542 0.976 
0.841 0.307 0.519 0.976 

where kST
A refers to the ellipse that contains the A point. 

Table 2 shows the equivalent stresses calculated with the following criteria: classical Mohr-
Coulomb, modified Mohr-Coulomb (with elliptic failure envelope) and respectively von Mises, for the 
material Zr65Fe5Al10Cu20. They were also calculated the relative errors of equivalent stresses predicted 
with above criteria versus failure stress from experimental determinations. In addition, it is presented 
the failure angle θ, for tensile stress of metallic glass strips. 

Table 2. Equivalent stresses, errors and failure angle θ for Zr65Fe5Al10Cu20. 

σ1 σ3 θT σeq MC 
σeq MC 

mod 
σeq vM eMC eMC mod evM 

[GPa] [GPa] [deg] [GPa] [GPa] [GPa] [%] [%] [%] 

2.236 1.591 51.687 0.683 2.308 1.994 69.36 -3.46 10.64 
2.093 1.112 53.659 1.007 2.237 1.813 54.85 -0.28 18.72 
2.108 0.832 55.547 1.297 2.340 1.839 41.88 -4.89 17.55 
1.938 0.518 55.255 1.432 2.206 1.738 35.81 1.13 22.11 
1.796 0.237 54.846 1.565 2.103 1.690 29.85 5.74 24.23 
1.639 0.074 53.608 1.567 1.930 1.603 29.77 13.47 28.14 
1.551 -0.082 53.003 1.631 1.856 1.593 26.90 16.79 28.58 
1.358 -0.325 51.152 1.675 1.650 1.547 24.90 26.02 30.68 
1.308 -0.423 50.584 1.720 1.607 1.563 22.89 27.97 29.95 
1.253 -0.529 49.871 1.769 1.558 1.585 20.69 30.16 28.94 
1.070 -0.621 47.811 1.676 1.292 1.481 24.89 42.11 33.61 

 
From table 2, it is observed that the equivalent stresses predicted with the proposed model from this 

paper are affected by lower errors than those predicted by classical criteria. Also, the failure angles are 
close to the experimental data. 

5. Conclusions 
Mohr-Coulomb model with elliptic failure envelope, in σ-τ space, was proposed by Rui Tao Qu and 
Zhe Feng Zhang for metallic glasses. This model was implemented in the principal stress space in a 
previous work done by authors [6]. In this paper, we propose a method for transforming coordinates 
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from σ-τ space in the principal stress space. The model proposed by the authors predicts with much 
better accuracy the equivalent stress compared to classical criteria (von Mises and Mohr-Coulomb), for 
metallic glass Zr65Fe5Al10Cu20. In addition, the predicted failure angles are close to those 
experimentally determined. 
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