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Abstract. A procedure has been developed to determine both the value of the ball’s angular 
velocity and the angular position of this velocity, according to the normal loads in a linear 
system with four contact points. The program is based on the variational analysis of the power 
losses in ball-races contacts. Based on this the two kinematics parameters of the ball (angular 
velocity and angular position) were determined, in a linear system type KUE 35 as function of 
the C/P ratio. 

1. Introduction 
The contact between the balls and races of the carriage and of the guide in a gothic-arch grooves linear 
system is realised in four contact ellipses. If initially all the contacts are preloaded with the same 
normal forces, in operation during various loads, the four contact ellipses are not equal loaded. 
Consequently, the balls motion is complex and both rolling and pivoting motion can appear in all four 
contact ellipses. If the carrying capacity and rigidity are higher that the two contact points, important 
friction losses in a gothic-arch grooves linear system can be observed, especially due to the pivoting 
friction.  

2. Theoretical model for determining the kinematics parameters of the balls 
In figure 1 is presented the position of the ball and the angular velocity of it in a linear system type 
KUE with 4 contact points. The ball exhibits 4 contact ellipses, 2 with the rail-corresponding with the 
points C1 and C2, and 2 with the carriage-corresponding with the points G1 and G2. Under the action 
of the force applied to the assembly Fy  the value of the angle   is usually 4/ . If the carriage has a 

linear velocity V, in the direction X, then the ball will rotate with an angular velocity b  in the 
direction indicated in Figure 1, situated at an angle  to the vertical axis of the assembly. There are 3 

cases of the relationship between the angle  and  regarding the contact loads Q1 and Q2. If the 

loads Q1 and Q2 are equal then the angle   is zero, but if Q1 is different than zero and Q2 is equal to 

zero, then  and   are equal between themselves and the angular velocity is perpendicular to the 

contact line comprised by C1-G1. The final dependency is if Q2 is greater than Q1, the angle   is 

positive but smaller than the angle . 
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Figure 1. The position of the ball and the angular velocity of the ball in a lineal system  
type KUE with 4 contact points. 

 
 If the value of the angle  is known, it can be deducted if on the contact surfaces C1-C2 and 

respectively G1-G2 the balls produce a spin motion or just a rolling one. If  is equal to zero the spin 

motion is exhibited on the contact points C1-C2, but if the value of angle  is equal to that of the 

angle  , then the spin motion only appears in the contact point C2. 
 The problem consists in establishing an analytical model to calculate the value of the angle  and 

of the angular velocity b , based on the values of the load Q1 and Q2. 
 The proposed model is based on minimal friction power losses on the contact surfaces C1 and C2. 
The following hypothesis is made: 
- the friction coefficient on the contact ellipses is constant; 
- only the power losses due to the friction caused by the sliding velocity on the contact points C1 and 
C2 have been taken into consideration. 
 For the contact ellipse presented in figure 2, the power loss for a slice of the ellipse is calculated 
based on the following formula: 

dFsvsdP            (1) 

where dFs is the friction force and vs is the sliding speed. 

 

Figure 2. The sliding speed and the friction force on the contact ellipse. 
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 The friction force is defined by the following relation: 
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 The tangential tension present in the contact ellipse is given by the relation: 
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 The contact pressure can be expressed in a different manner: 
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were b1 is the contact ellipse semi-axes and Hp  is the maximum Hertzian contact pressure, a and b 
are the semi-major and semi-minor axes of the ellipse. b1 can be determined by: 
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 The semi-major and semi-minor axes of the contact ellipse are computed based on the following 
formula: 
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where E is the Young’s modulus for the materials in contact, XR  is the equivalent radius in the rolling 

direction determined by wX dR  5.0 and k  is the radius ratio based on: 
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ZYR , – the transverse radius for a ball linear race contact can be determined by the relations: 

for ball-carriage contact:  
cwwCZY fddR 


121

,,

         (9)

 for ball-guide contact:  
gwwGZY fddR 


121

,,

       (10) 

where wd is the ball diameter, cf  is the carriage conformity and gf the guide conformity.   

 Taken into consideration all the equation above, the friction force equation can be rewritten in the 
following form: 
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where the (+) or (-) will be based on the sliding speed direction. 
 The sliding speed can also be expressed as a function of a distance y to the centre of the ellipse, in 
regards to: 

‐ the contact ellipse C1: 
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‐ the contact ellipse C2: 
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where: a1 and a2 are the semi-major axes of the contact ellipse C1 and C2 which are dependent on the     
normal loads Q1 and Q2, respectively; v  is the tangential speed in a ball-carriage and ball-guide 
contact, based on the fact that V is the carriage speed in a ball linear system ( Vv  5.0 ); cRd is the 

deformed contact ball-race radius for the ball-carriage contact and GRd is the deformed contact ball-

race radius for the ball-guide contact, that are determined by following relation: 
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 The power losses due to friction can be expressed integrating relation (1) for: 
‐ the contact ellipse C1: 
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‐ the contact ellipse C2: 
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 The moment of spin of the ball is calculated with the following formula: 
‐ for the contact ellipse C1: 
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‐ for the contact ellipse C2: 
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 Projecting the angular velocity vector b  on the C1-G1 or C2-G2 axis, based on the value of the 
angular position of the ball  , the resulting angular velocity vector can be calculated:  

‐ for the C1-G1 axis projection: 

)
4

cos(1   bp         (19) 

‐ for the C2-G2 axis projection: 

)
4
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 The power loss due to the spin moment of the ball is: 
‐ for the C1-G1 axis: 
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bMpPp  11         (21) 

‐ for the C2-G2 axis: 
bMpPp  22         (22) 

 The total power loss for both the contact ellipse C1 and C2, including the spin moments is: 

2121 PpPpPSPSPS         (23) 

 For a specific geometry and known values for the carriage speed, the normal loads Q1 and Q2 and 
the friction coefficient µ, the total energy losses can be considered dependent on the two parameters 
 and b : 

),( bPSPS          (24) 

 It can assume that for any values of the Q1 and Q2 loads, the value of the parameters  and b can 

lead to a minimum value of the total power loss, furthermore the function ),( bPSPS  will be 

minimum when the parameters  and b  have the adequate values. 

3. Numerical results 
The graphical representation of the 3D and 2D variations of power based on the two parameters ß and 
ωb for the different values of the C/P ratios are presented in the following figures. 

 

Figure 3. C/P=∞ (a) 3D representation of total power loss variation based on the two parameters ß and 
ωb, (b) 2D projection of the power loss variation in regards to ωb. 
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Figure 4. C/P=∞ (a) Power loss variation in relation to ωb, (b) Power loss variation in relation to ß. 

 

Figure 5. C/P=20 (a) 3D representation of total power loss variation based on the two parameters ß 
and ωb, (b) 2D projection of the power loss variation in regards to ωb. 

 

 

Figure 6. C/P=20 (a) Power loss variation in relation to ωb, (b) Power loss variation in relation to ß 
 

 

Figure 7. C/P=7.75 (a) 3D representation of total power loss variation based on the two parameters ß 
and ωb, (b) 2D projection of the power loss variation in regards to ωb 
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Figure 8. C/P=7.75 (a) Power loss variation in relation to ωb, (b) Power loss variation in relation to ß 

 

Figure 9. C/P=6 (a) 3D representation of total power loss variation based on the two parameters ß and 
ωb, (b) 2D projection of the power loss variation in regards to ωb 

 

 

Figure 10. C/P=6 (a) Power loss variation in relation to ωb, (b) Power loss variation in relation to ß 
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Figure 11. C/P=minimum (a) 3D representation of total power loss variation based on the two 
parameters ß and ωb, (b) 2D projection of the power loss variation in regards to ωb 

 

 

Figure 12. C/P=6 (a) Power loss variation in relation to ωb, (b) Power loss variation in relation to ß 

 

Figure 13. The loading forces Q1 and Q2 in relation to the power loss and a polynomial 
approximation of these values  
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4. Conclusions 
The motion of a ball in a linear system with four contact points is complex. The angular velocity 
varies in a large domain, depending on the normal loads on the contacts. Also, the position of the 
ball’s angular velocity vector changes from zero degrees to 45 degrees, in regards to the normal loads 
on the contact points. The complex motion of the ball is the cause of the large sliding on the contact 
ellipses. So, if the two contacts between ball and carriage (or between ball and guide) are loaded, the 
pivoting motion appears on both contacts and the friction losses are high. If only one contact is loaded 
(for low values of the ratio C/P), the sliding between ball and race is small, thus two pure rolling 
points appear and the friction losses are significantly reduced. For the linear system KUE 35, it was 
analytically established that the important change in the ball motion is between C/P = 8 and C/P = 6. 
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