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Abstract. The layup optimization of the laminated composites is a very complex topic which 
involves a convoluted solution space usually explored using heuristic computational 
techniques. Due to the solution space complexity a lot of layup configurations are evaluated 
during the optimization process. This fact leads to the mandatory requirement that the 
configuration evaluation should be fast enough to ensure the convergence of the optimization 
procedure without sacrificing the accuracy. In this work, we propose a robust, accurate and 
very fast finite element model based on the first-order shear deformation theory (FSDT). The 
model is structured in three main parts: preprocessing, processing and post processing. The 
main strategy is to transfer as much as possible operations in the preprocessing phase which is 
executed only once and to subsequently reuse the results in the processing and post processing 
phases which are executed for each layup configuration. Using this strategy, the execution time 
of the processing and post processing phases is drastically reduced and almost consists of 
regenerating and solving the global linear system – more that 95%. The proposed procedure is 
relatively easy to implement in Matlab which holds a very powerful linear system solver for 
sparse matrices. Also, the accuracy of the model was demonstrated by comparison with Ansys 
and with some closed form solutions. 

Introduction 
The physical properties of composite materials are highly influenced by the fibers orientation. This 
characteristic becomes critical when we bring into question composite laminates materials built from 
unidirectional or bidirectional layers, which exhibit an orthotropic behaviour.  
 The layup optimization is a very complex problem involving a huge solution space usually 
explored using heuristic computational techniques of which the most reliable are the genetic 
algorithms [1-8]. During the optimization process a lot of layup configurations are evaluated in order 
to converge to the global optimum solution. This fact leads to the mandatory requirement that the 
evaluation of a single layup configuration should be fast enough to ensure convergence in an 
acceptable time range.  
 On the other hand, the mechanical behaviour of the layered composite laminates is very complex 
due to the orthotropic particularity and its analysis involves numerical tools from which the most 
performant is the finite element method (FEM). A lot of optimization studies are using commercial 
software packages [9-15] for mechanical behaviour simulation which may be time consuming. 
 Because FEM is a time expensive analysis, a big part of the optimization algorithms are based on 
analytical closed form models applicable only for simple geometries (like rectangle) and simple stress 
distributions [16-19].  
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 In this respect we developed a very fast and robust finite element model which can be used either in 
the optimization of stacking sequence or in the mechanical behaviour analysis of a certain layup 
configuration. The model in based on the first-order shear deformation theory (FSDT) and it is 
structured such that most as possible computations are executed only once in a preprocessing phase 
and the results are reused in the processing and post processing phases which are individually 
executed for all the layup configurations evaluated during the optimization process.  
 The accuracy of the model is proved by comparison with Ansys and some theoretical results. Also, 
a detailed execution time analysis is provided in order to show that for any substantial speed 
improvement it should be addressed complex computation techniques and numerical methods which 
exceed our purpose. 

Mathematical model 
The mathematical model is based on first-order shear deformation theory (FSDT). This is a two-
dimensional theory derived from three-dimensional elasticity theory by making two important 
assumptions regarding the variation of displacements through the thickness of the laminate. According 
to these assumptions – coming from Kirchhoff-Love hypothesis – straight lines perpendicular to the 
midplane before deformation remain (a) straight and (b) inextensible. It is also assumed that the strains 
are continuous through the thickness which allows the replacement of a multilayered laminate with an 
equivalent single layer. 
 Even if the mathematical model is based on FSDT, the strategies used for speeding up the FEA of 
laminated composites easily extend to any two-dimensional theory. 
 According to FSDT the displacements ሺ∆௫, ∆௬, ∆௭ሻ have the form: 
 

ቐ
∆௫ሺݔ, ,ݕ ,ݖ ሻݐ ൌ ∆௫௠ሺݔ, ,ݕ ሻݐ ൅ ݖ ∙ ߶௬ሺݔ, ,ݕ ሻݐ
∆௬ሺݔ, ,ݕ ,ݖ ሻݐ ൌ ∆௬௠ሺݔ, ,ݕ ሻݐ ൅ ݖ ∙ ߶௫ሺݔ, ,ݕ ሻݐ
∆௭ሺݔ, ,ݕ ,ݖ ሻݐ ൌ ∆௭௠ሺݔ, ,ݕ 																														ሻݐ

                     (1) 

 
Where ሺ∆௫௠, ∆௬௠, ∆௭௠, ߶௫, ߶௬ሻ represents the midplane correspondent point displacements and rotations 
around ௫ܱ and ௬ܱ axes. 
 The finite element model based on FSDT has the compact form: 
 

ሾܭ௘ሿሼ∆௘ሽ െ ሼܨ௘ሽ ൌ ሼ0ሽ																																																												ሺ2ሻ 
 

Where ሺܭ௘ሻ represents the element stiffness matrix, ሺ∆௘ሻ	 represents the element nodes displacements 
and rotation (degrees of freedom – the unknowns) and ሺܨ௘ሻ represents the element force vector 
defined by Neumann boundary condition. 
 The expanded form of (2) is: 
 

෍෍ܭ௜௝
ఈఉΔ௝

ఉ െ ௜ܨ
ఈ ൌ 0,				൫ߙ ൌ 1,5	ܽ݊݀	݅ ൌ 1, ݊൯																							ሺ3ሻ

௡

௝ୀଵ

ହ

ఉୀଵ

 

 
where (n) is the number of element nodes. 
     Stiffness matrix blocks can be computed as follow: 

 

௜௝ܭ
ଵఈ ൌ න ൬

߲߰௜
ݔ߲ ଵܰ௝

ఈ ൅
߲߰௜
ݕ߲ ଺ܰ௝

ఈ ൰ ݔ݀ ݕ݀
ஐ೐

																																						 

௜௝ܭ
ଶఈ ൌ න ൬

߲߰௜
ݔ߲ ଺ܰ௝

ఈ ൅
߲߰௜
ݕ߲ ଶܰ௝

ఈ ൰ ݔ݀ ݕ݀
ஐ೐
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௜௝ܭ
ଷఈ ൌ න ൬

߲߰௜
ݔ߲

ܳଵ௝
ఈ ൅

߲߰௜
ݕ߲

ܳଶ௝
ఈ ൰ ݔ݀ ݕ݀

ஐ೐
																																																																					ሺ4ሻ 

௜௝ܭ
ସఈ ൌ න ൬

߲߰௜
ݔ߲

ଵ௝ܯ
ఈ ൅

߲߰௜
ݕ߲

଺௝ܯ
ఈ ൅ ߰௜ܳଵ௝

ఈ ൰ ݔ݀ ݕ݀
ஐ೐

																				 

௜௝ܭ
ହఈ ൌ න ൬

߲߰௜
ݔ߲

଺௝ܯ
ఈ ൅

߲߰௜
ݕ߲

ଶ௝ܯ
ఈ ൅ ߰௜ܳଶ௝

ఈ ൰ ݔ݀ 														ݕ݀
ஐ೐

					 

 
ሺ߰௜ሻ denotes the element Lagrange shape functions. 
ሺ ௜ܰ௝

ఈሻ coefficients are defined as: 
 

ଵܰ௝
ଵ ൌ ଵଵܣ

߲߰௝
ݔ߲

൅ ଵ଺ܣ
߲߰௝
ݕ߲

,			 ଵܰ௝
ଶ ൌ ଵ଺ܣ

߲߰௝
ݔ߲

൅ ଵଶܣ
߲߰௝
ݕ߲

															 

ଵܰ௝
ସ ൌ ଵଵܤ

߲߰௝
ݔ߲

൅ ଵ଺ܤ
߲߰௝
ݕ߲

,			 ଵܰ௝
ହ ൌ ଵ଺ܤ

߲߰௝
ݔ߲

൅ ଵଶܤ
߲߰௝
ݕ߲

																 

ଶܰ௝
ଵ ൌ ଵଶܣ

߲߰௝
ݔ߲

൅ ଶ଺ܣ
߲߰௝
ݕ߲

,			 ଶܰ௝
ଶ ൌ ଶ଺ܣ

߲߰௝
ݔ߲

൅ ଶଶܣ
߲߰௝
ݕ߲

																																											ሺ5ሻ 

ଶܰ௝
ସ ൌ ଵଶܤ

߲߰௝
ݔ߲

൅ ଶ଺ܤ
߲߰௝
ݕ߲

,			 ଶܰ௝
ହ ൌ ଶ଺ܤ

߲߰௝
ݔ߲

൅ ଶଶܤ
߲߰௝
ݕ߲

															 

଺ܰ௝
ଵ ൌ ଵ଺ܣ

߲߰௝
ݔ߲

൅ ଺଺ܣ
߲߰௝
ݕ߲

,			 ଺ܰ௝
ଶ ൌ ଺଺ܣ

߲߰௝
ݔ߲

൅ ଶ଺ܣ
߲߰௝
ݕ߲

															 

଺ܰ௝
ସ ൌ ଵ଺ܤ

߲߰௝
ݔ߲

൅ ଺଺ܤ
߲߰௝
ݕ߲

,			 ଺ܰ௝
ହ ൌ ଺଺ܤ

߲߰௝
ݔ߲

൅ ଶ଺ܤ
߲߰௝
ݕ߲

															 

 
ሺܯ௜௝

ఈሻ coefficients are defined as: 
 

ଵ௝ܯ
ଵ ൌ ଵଵܤ

߲߰௝
ݔ߲

൅ ଵ଺ܤ
߲߰௝
ݕ߲

ଵ௝ܯ			,
ଶ ൌ ଵ଺ܤ

߲߰௝
ݔ߲

൅ ଵଶܤ
߲߰௝
ݕ߲

															 

ଵ௝ܯ
ସ ൌ ଵଵܦ

߲߰௝
ݔ߲

൅ ଵ଺ܦ
߲߰௝
ݕ߲

ଵ௝ܯ			,
ହ ൌ ଵ଺ܦ

߲߰௝
ݔ߲

൅ ଵଶܦ
߲߰௝
ݕ߲

																 

ଶ௝ܯ
ଵ ൌ ଵଶܤ

߲߰௝
ݔ߲

൅ ଶ଺ܤ
߲߰௝
ݕ߲

ଶ௝ܯ			,
ଶ ൌ ଶ଺ܤ

߲߰௝
ݔ߲

൅ ଶଶܤ
߲߰௝
ݕ߲

																																												ሺ6ሻ 

ଶ௝ܯ
ସ ൌ ଵଶܦ

߲߰௝
ݔ߲

൅ ଶ଺ܦ
߲߰௝
ݕ߲

ଶ௝ܯ			,
ହ ൌ ଶ଺ܦ

߲߰௝
ݔ߲

൅ ଶଶܦ
߲߰௝
ݕ߲

															 

଺௝ܯ
ଵ ൌ ଵ଺ܤ

߲߰௝
ݔ߲

൅ ଺଺ܤ
߲߰௝
ݕ߲

଺௝ܯ			,
ଶ ൌ ଺଺ܤ

߲߰௝
ݔ߲

൅ ଶ଺ܤ
߲߰௝
ݕ߲

															 

଺௝ܯ
ସ ൌ ଵ଺ܦ

߲߰௝
ݔ߲

൅ ଺଺ܦ
߲߰௝
ݕ߲

଺௝ܯ			,
ହ ൌ ଺଺ܦ

߲߰௝
ݔ߲

൅ ଶ଺ܦ
߲߰௝
ݕ߲

															 

 
 
 
ሺܳ௜௝

ఈሻ  coefficients are defined as: 
 

ܳଵ௝
ଷ ൌ ହହܣ

߲߰௝
ݔ߲

൅ ସହܣ
߲߰௝
ݕ߲

,			ܳଶ௝
ଷ ൌ ସହܣ

߲߰௝
ݔ߲

൅ ସସܣ
߲߰௝
ݕ߲

															 

ܳଵ௝
ସ ൌ ܳଶ௝				ହହ߰௝,ܣ

ସ ൌ  ሺ7ሻ																																																																																												ସହ߰௝ܣ
ܳଵ௝
ହ ൌ ܳଶ௝				ସହ߰௝,ܣ

ହ ൌ  																																																													ସସ߰௝ܣ
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ሺܣ௜௝, ,௜௝ܦ  ௜௝ሻ denotes extensional stiffnesses, bending stiffnesses and bending-extensional couplingܤ
stiffnesses. 
 Force vector blocks can be computed as follow: 
 

௜ܨ
ଵ ൌ න ߰௜

୻೐
௡ܰ݀,ݏ				ܨ௜

ଶ ൌ න ߰௜
୻೐

௡ܰ௦݀ݏ																																													 

௜ܨ
ଷ ൌ න ߰௜

୻೐
ܳ௡݀ݏ ൅ න ߰௜

ஐ೐
ݍ ݔ݀  ሺ8ሻ																																																																																	ݕ݀

௜ܨ
ସ ൌ න ߰௜

୻೐
௜ܨ				,ݏ௡݀ܯ

ହ ൌ න ߰௜
୻೐

 																																											ݏ௡௦݀ܯ

 
Where ሺ ௡ܰ, ௡ܰ௦, ,௡௦ܯ,௡ܯ ܳ௡,  ሻ represent the corresponding edge normal and tangential forces andݍ
moments, transverse force and transverse distributed load, respectively. 

FE model structure 
During the layup optimization of the composite laminates, a lot of layup configurations are evaluated 
in order to find the global optimal solution. Based on some observations the FE model can be 
structured such that the execution time required for the evaluation of a single configuration decreases 
dramatically. Our proposal refers to a structure which contains three major phases: preprocessing, 
processing and post processing. These phases are discussed in more details in the next pages. 
 
1.1. Preprocessing 
Regarding speeding up the FE model, the preprocessing phase is the most important. For a specific 
geometry subjected to layup optimization, the preprocessing phase is executed only once at the 
beginning of the optimization process and the results are reused in the other two phases - processing 
and post processing, which are executed for all layup configurations evaluated.   
 That being said, it is desirable to include as much as possible operations in the preprocessing in 
order to reduce the amount of calculations to be done in the processing and post processing.  
 Below are presented the operations included in the preprocessing phase. 
 A1 - Meshing – it is the most obvious operation which can be transferred to the preprocessing 
because the optimization process is carried out for specific (constant) geometry. Meshing involves the 
geometry discretization using 2D elements. In [20] is presented a robust meshing algorithm with 
triangular elements based on Delaunay triangulation. The algorithm can be very easily implemented in 
MATLAB thanks to the built-in function for computing the Delaunay triangulation. Also, it can be 
extended to quadrilateral elements by using indirect methods such those presented in [21-22]. After 
meshing the topology is described by a set of points representing the nodes and a connectivity matrix 
representing the elements of order I. 
 A2 - Adding auxiliary nodes - if higher order elements are required some additional nodes should 
be added. For example for a second order triangular element it should be added three auxiliary nodes 
representing the geometric place of the middle of each triangle edge. These auxiliary nodes are added 
to the end of the set of points obtained from meshing. Also, the connectivity matrix is updated 
accordingly with the auxiliary points. 
 A3 - Stiffness coefficients computation - for all the types of layers at all the orientations used in the 
optimization process. The stiffness coefficients are used afterwards in the processing phase to the 
computation of the extensional stiffnesses (A), bending stiffnesses (D) and bending-extensional 
coupling stiffnesses (B). If the layer’s orientation is considered a continuous variable in the 
optimization process than the stiffness coefficients can be computed only for a representative discrete 
set of orientations and then interpolated in the processing phase. 
 A4 - Shape functions computation – for the nodes of all the elements. 
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 A5 - Elemental force vectors computation. From equations (8) it can be observed that the 
elemental forces depends only of the elemental shape functions and Neumann boundary conditions 
which remains constant during the optimization process due to the fixed topology. In other words the 
elemental forces are independent from the optimization process variables: number of layers, types of 
layers and orientation of layers. 
 A6 - Global force vector assembly - based on the above observation (A5) the global force vector 
remains constant during the optimization process. 
 A7 - Elemental stiffness coefficients precalculating. For example, if we consider the stiffness 
matrix block: 
 

௜௝ܭ
ହఈ ൌ න ൬

߲߰௜
ݔ߲

଺௝ܯ
ఈ ൅

߲߰௜
ݕ߲

ଶ௝ܯ
ఈ ൅ ߰௜ܳଶ௝

ఈ ൰ ݔ݀ 														ݕ݀
ஐ೐

																																								ሺ9ሻ 

 
For ߙ ൌ 5: 
 

௜௝ܭ
ହହ ൌ න ൬

߲߰௜
ݔ߲

଺௝ܯ
ହ ൅

߲߰௜
ݕ߲

ଶ௝ܯ
ହ ൅ ߰௜ܳଶ௝

ହ ൰ ݔ݀ 														ݕ݀
ஐ೐

																																						ሺ10ሻ 

଺௝ܯ
ହ ൌ ଺଺ܦ

߲߰௝
ݔ߲

൅ ଶ଺ܦ
߲߰௝
ݕ߲

																																																																		 

ଶ௝ܯ
ହ ൌ ଶ଺ܦ

߲߰௝
ݔ߲

൅ ଶଶܦ
߲߰௝
ݕ߲

																																																																		 

ܳଶ௝
ହ ൌ  																																																																																										ସସ߰௝ܣ

 
The integral associated with stiffness matrix block ሺܭ௜௝

ହହሻ expands to: 
 

ܫ ൌ ௜௝ܭ
ହହ ൌ න ሺܦଶ଺

߲߰௜
ݔ߲

߲߰௝
ݕ߲

൅ ଺଺ܦ
߲߰௜
ݔ߲

߲߰௝
ݔ߲

൅
ஐ೐

ଶ଺ܦ	
߲߰௜
ݕ߲

߲߰௝
ݔ߲

൅ ଶଶܦ
߲߰௜
ݕ߲

߲߰௝
ݕ߲

൅ ସସ߰௜߰௝ሻܣ ݔ݀  ሺ11ሻ																																																																																																																	ݕ݀
 

Using the linearity property of the integration operation, the expanded integral (I) can be written as: 
 

ܫ ൌ ௜௝ܭ
ହହ ൌ ଶ଺ܦ න

߲߰௜
ݔ߲

߲߰௝
ஐ೐ݕ߲

ݔ݀	 ݕ݀ ൅ܦ଺଺ න
߲߰௜
ݔ߲

߲߰௝
ஐ೐ݔ߲

ݔ݀	 ݕ݀ ൅																													 

ଶ଺ܦ																				 න
߲߰௜
ݕ߲

߲߰௝
ஐ೐ݔ߲

ݔ݀	 ݕ݀ ൅	ܦଶଶ න
߲߰௜
ݕ߲

߲߰௝
ஐ೐ݕ߲

ݔ݀	 ݕ݀ ൅																											 

ସସܣ න ߰௜߰௝ ݔ݀ ݕ݀
ஐ೐

																																																																				 

 
 
 

ܫ ൌ ௜௝ܭ
ହହ ൌ ଶ଺ܦ ∙ ଵܫ ൅ ଺଺ܦ ∙ ଶܫ ൅ ଶ଺ܦ ∙ ଷܫ ൅ ଶଶܦ ∙ ସܫ ൅ ସସܣ ∙  ሺ12ሻ																																										ହܫ

 
Integral (10) written in the form (12) is a linear combination between some A and D matrices 
coefficients and integrals (Ii) defined over the elemental subdomain with integrands dependent only of 
shape functions. A, B and D matrices are computed in the processing phase based on the number of 
layers, types and orientations, being related to the optimization process. Otherwise, integrals (Ii) are 
independent from the optimization process due to the constant topology and it can be computed only 
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once and reused to the reconstruction (by linear combination) of the integral (12) in the processing 
phase - after A, B and D matrices computation.   
 The same observation sticks for all the stiffness matrix blocks. In [23] is presented an accurate 
evaluation scheme for triangular domain integrals. 
 A8 - Compute elemental stiffness matrices coefficients positions in the global stiffness matrix. 
This operation is done due to the observation that the global stiffness matrix is a sparse matrix. Matlab 
has very powerful numerical tools dedicated to sparse matrices, like the linear system solver which is 
used to solve the global system. A sparse matrix is defined in Matlab by matrix dimensions and by 
three vectors (i, j, v) where the elements of i and j represent the matrix positions (row, column) for the 
non-zero elements and the elements of v represents the values at those positions. In preprocessing 
phase i and j vectors representing the positions of the elemental stiffness matrices coefficients are 
computed. The vector v is afterwards reconstructed in the processing phase from A, B and D matrices 
coefficients and the precalculated integrals for elemental stiffness coefficients (A7).  
 Another important observation here is related to the case when vectors i and j contains multiple 
items for the same matrix position. The Matlab behaviour in this situation is to sum all the values from 
vector v corresponding to the same matrix position. This behaviour is equivalent to the assembly 
process – for global stiffness matrix.  
 A9 - Dirichlet boundary conditions – are directly applied for the global force vector. For the 
global stiffness matrix there are computed the correspondent positions in the v vector. After v vector is 
computed in the processing phase, the values from the correspondent positions are replaced 
accordingly with Dirichlet boundary conditions. 
 
1.2. Processing 
The processing phase is executed for all layup configurations generated during the optimization 
process. For obtaining a globally optimal solution a lot of layup configurations are evaluated in order 
to explore the complex solution space. To achieve this goal it is mandatory that the processing phase 
of the layup configuration to be very fast. Transferring a lot of operations to the preprocessing phase 
the amount of computations done in the processing phase is dramatically reduced to few which are 
presented below. 
 B1 - Computation of the extensional stiffness matrix (A), bending stiffness matrix (D) and 
bending-extensional coupling stiffness matrix (B) – using precomputed stiffness coefficients 
correspondent to the layers type and orientation (A3). 
 B2 - Computation of the v vector – by linearly combining specific A, B and D matrix coefficients 
(B1) with correspondent precomputed integrals (A7).  
 B3 - Apply Dirichlet boundary conditions for the global stiffness matrix – by replacing the 
values of the v vector at the precomputed positions associated with Dirichlet boundary condition (A9).  
 B4 - Solve the global linear system – using the Matlab solver for sparse matrices. 
 
1.3. Post processing 
Similarly with the processing phase, the post processing phase is executed for all layup configurations 
generated during the optimization process. The solutions of the global linear system represent the 
displacements and rotations of the midplane points associated with the topology nodes. Besides these, 
other mechanical characteristics are often required, sometimes for in plane positions different from 
nodes. All these additional operations are executed in the post processing phase. Because the 
requirements differ from a project to another, the post processing is a custom phase.  
 Below are listed some of the most common additional computations which are performed using the 
global linear system solutions. 
 C1 - Displacements computation – using relations (1). 
 C2 - Stresses computation – using von Karman strain-displacements relations and Hooke’s law. 
 C3 - Failure criteria evaluation - Tsai-Hill, Tsai-Wu, etc. 
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2. Model validation 
In order to validate the FE model it was developed the following two procedures: 

- By comparison between the results obtained with the developed FE model and the results 
obtained with Ansys for the same specific geometry and boundary condition; 

- By comparison between the results obtained with the developed FE model and the theoretical 
results available for the same specific geometry and boundary condition with available closed 
form solution. 
 

2.1. Validation by comparison with Ansys results 
The comparison procedure consists of the following steps: 

- Compute the solution for the same geometry, boundary condition and layup configuration 
using the developed FE model and Ansys software; 

- Export the nodes positions and displacements obtained with Ansys; 
- Find the triangular elements which contains the Ansys nodes positions; 
- Compute the displacements at Ansys nodes positions using the interpolation functions 

obtained with FE model; 
- Compare the displacements obtained with the developed FE model and Ansys using the 

following deviation formula for each axis: 
 

%ߝ ൌ ቤ
∆஺௡௦௬௦ െ ∆ெ௔௧௟௔௕

∆஺௡௦௬௦
ቤ ∙ 100																																																																						ሺ13ሻ 

 
 The geometry and the boundary condition used are illustrated in figure 1(a) and consist of a 
rectangular plate with one edge clamped and a compression load was applied to the opposite edge. The 
layup configuration consist of 7 carbon fiber plies with [0º, 15º, 30º, 45º, 30º, 15º, 0º] orientation. The 
mechanical properties of the othotropic carbon fiber ply are shown in table 1. 

Table 1. Mechanical properties of a carbon fiber lamina. 
E1 (GPa) E2 (GPa) G12 (GPa) G23 (GPa) G13 (GPa) ߴଵଶ(-) ߴଶଵ(-) h (mm) 

147 10.3 7 3.7 7 0.27 0.0189 0.5 
 
 In figure 1 are shown (a) the geometry and boundary condition, (b) the mesh, (c-d) the 
displacements in x and y directions and (e-g) the stresses ߪ௫,  ௫ and ߬௫௬. The displacements in zߪ
direction are 0 due to material symmetry and were skipped from plotting. The mesh consists of 1310 
nodes and 2476 order I triangular elements. The mesh and the results from figure 1 are obtained with 
the developed FE model. In Ansys simulation it was used quadrilateral elements of type SHELL 181. 
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Figure 1. (a) geometry and boundary condition, (b) mesh, (c-d) displacements in x and y directions (e-

g) ߪ௫,  .௫ and ߬௫௬ߪ
 
The mean and standard deviation for FE model vs. Ansys deviations – in percentage – is show below: 
 

࢞ࡹ - ൌ ૙. ૚૚૝ૠ	%                 ࢞ࡰ ൌ ૙. ૞૞ૢ	% 

࢟ࡹ - ൌ ૙. ૚ૡ૚૚	%                 ࢟ࡰ ൌ ૙. ૟૙૞૚	% 

࢒ࢇ࢚࢕࢚ࡹ - ൌ ૙. ૚૙૝૞	%            ࢒ࢇ࢚࢕࢚ࡰ ൌ ૙. ૛૛૜ૠ	% 

 It is obvious that formula (13) isn’t applicable for the Ansys nodes with the corresponding 
displacement equal to 0. For these nodes we will show below that the maximum absolute deviation is 
very small. From a total of 784 Ansys nodes only 28 are subjected to this exception. 
 

- ∆௠௔௫
௫ ൌ 4.0753 ∙ 10ିଵସ	ሾ݉ሿ  

- ∆௠௔௫
௬ ൌ 5.6402 ∙ 10ିଵସ	ሾ݉ሿ  

- ∆௠௔௫
௧௢௧௔௟ൌ 6.9584 ∙ 10ିଵସ	ሾ݉ሿ 
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 From the above deviations it is obvious that the results obtained with the developed FE model are 
extremely close to the results obtained with Ansys. 
 
2.2. Validation by comparison with theoretical results 
 For this procedure it was emulated the mechanical behaviour of an isotropic material for a 
rectangular plate with a small diameter central hole. The plate has one clamped edge and a traction 
load ߪ was applied to the opposite edge - figure 2(a). The theoretical expectation is that the stress at 
point P in the direction of the applied load is 3 times bigger than ߪ.  
 The layup configuration consists of a single layer and the material used in this simulation is steel 
with the following mechanical properties - table 2: 
 

Table 2. Mechanical properties of a steel lamina. 
E1 (GPa) E2 (GPa) G12 (GPa) G23 (GPa) G13 (GPa) ߴଵଶ(-) ߴଶଵ(-) h (mm) 

210 210 79 79 79 3 3 1 
 

 
Figure 2. (a) geometry and boundary condition, (b) mesh, (c-d) displacements in x and y directions  

(e-g) ߪ௫,  .௫ and ߬௫௬ߪ
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 In figure 2 are shown (a) the geometry and boundary condition, (b) the mesh, (c-d) the 
displacements in x and y directions and (e-g) the stresses ߪ௫,  ௫ and ߬௫௬. The displacements in zߪ
direction are 0 and were skipped from plotting. The mesh consists of 1240 nodes and 2375 order I 
triangular elements. The stresses ߪ௫ at point P and at diametrical opposing point are 30.2 MPa and 
30.1 MPa, respectively. The expected theoretical stress is 30 MPa which means that the model error 
in this case is 0.66%. 
 
3. Execution time analysis 
The model speed analysis was conducted on a regular PC with the following configuration: Intel dual 
CPU T3400 @2.16 GHz, RAM 2.5 GB DDR2. In this section all the time functions values are 
expressed in seconds and the elements used in simulation are triangular of order I. 
 The preprocessing phase was skipped from the speed analysis due to its purpose to be executed 
only once and to incorporate as much as possible operations. That being said the model executions 
time related to a single configuration simulation is defined as: 
 

௦ܶሺ݌, ݊ሻ ൌ ௣ܶ௥௢௖ሺ݌, ݊ሻ ൅ ௣ܶ௢௦௧ሺ݊ሻ																																																																													ሺ14ሻ 
 

Where ௦ܶ , ௣ܶ௥௢௖ and ௣ܶ௢௦௧ represent the total simulation time, processing time and post processing 
time, p represents the plies count and n represents the topology nodes count. The processing time can 
be defined as: 
 

௣ܶ௥௢௖ሺ݌, ݊ሻ ൌ ஻ܶଵሺ݌ሻ ൅ ஻ܶଶሺ݊ሻ ൅ ஻ܶଷସሺ݊ሻ																																																											ሺ15ሻ 
 

Where ஻ܶଵ, ஻ܶଶ represent the execution time related to B1 and B2 processing subphases and ஻ܶଷସ 
represents the execution time related to B3 and B4 processing subphases which were coupled here due 
to the fact that the execution time of the subphase B3 in neglectable. 
 As the post processing phase is a custom phase depending of the project we consider only the 
displacements computation to simplify our execution time analysis. 
 From (14) and (15): 

 
௦ܶሺ݌, ݊ሻ ൌ ஻ܶଵሺ݌ሻ ൅ ஻ܶଶሺ݊ሻ ൅ ஻ܶଷସሺ݊ሻ ൅ ௣ܶ௢௦௧ሺ݊ሻ																																									ሺ16ሻ 

 
 In order to define the function ஻ܶଵሺ݌ሻ we executed the processing subphase ஻ܶଵfor ݌ ൌ 1,100തതതതതതത with 
random generated plies orientation in the [0º, 360º] range. It can be observed from figure 3(a) that the 
function ஻ܶଵሺ݌ሻ is linear. Using linear regression with the constraint that for 0 plies the execution time 
is 0 we obtained the following form for ஻ܶଵሺ݌ሻ: 
 

஻ܶଵሺ݌ሻ ൌ 6.2071 ∙ 10ିହ ∙  ሺ17ሻ																																																																																			݌
 

 A different analysis was conducted for ஻ܶଶሺ݊ሻ, ஻ܶଷସሺ݊ሻ and ௣ܶ௢௦௧ሺ݊ሻ. Because these functions are 
dependent of the topology number of nodes and the topology and boundary condition generation is a 
quite involving process it was considered only a set of 5 topologies with the number of nodes in the [0, 
11660] range. 
 In the table 3 are presented the time results obtained at simulation for ஻ܶଶ, ଷܶସ, ௣ܶ௢௦௧ and also for 

஻ܶଶଷସ - ( ஻ܶଶ+ ஻ܶଷସ). 
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Table 3. Execution time analysis for the subphases dependent of the topology number of nodes. 
p (-) ࡮ࢀ૛ (s) ࡮ࢀ૜૝ (s) ࢀ૛૜૝= +૛࡮ࢀ  (s) ࢚࢙࢕࢖ࢀ ૜૝ (s)࡮ࢀ
128 0.015698 0.010708 0.026406 0.00011758 
494 0.064868 0.046115 0.110983 0.00012638 

1310 0.178807 0.169404 0.348211 0.00014996 
5162 0.725306 0.997104 1.72241 0.00025433 
11660 1.6813 3.9465 5.6278 0.00042567 

 
 In figure 3(b-c) are presented the results from table 3 together with the regression fits. It can be 
easily observed that ஻ܶଶሺ݊ሻ and ௣ܶ௢௦௧ሺ݊ሻ are linear and ஻ܶଷସሺ݊ሻ - and consequently ஻ܶଶଷସሺ݊ሻ - have a 
quadratic behaviour. 
 

 
Figure 3. Execution time analysis for (a) ஻ܶଵሺ݌ሻ, (b) ஻ܶଶሺ݊ሻ, ஻ܶଷସሺ݊ሻ and ஻ܶଶଷସሺ݊ሻ and  

(c) ௣ܶ௢௦௧ሺ݊ሻ. 
 

 The regression was used to obtain the following forms for ஻ܶଶሺ݊ሻ, ஻ܶଷସሺ݊ሻ - and consequently 
஻ܶଶଷସሺ݊ሻ – and ௣ܶ௢௦௧ሺ݊ሻ: 

 

஻ܶଶሺ݊ሻ ൌ 1.4419 ∙ 10ିସ ∙ ݊																																																																																																																				ሺ18ሻ 
஻ܶଷସሺ݊ሻ ൌ 2.22 ∙ 10ି଼ ∙ ݊ଶ ൅ 7.77 ∙ 10ିହ ∙ ݊ ൅ 0.0087																																																																		ሺ19ሻ 
஻ܶଶଷସሺ݊ሻ ൌ ஻ܶଶሺ݊ሻ ൅ ஻ܶଷସሺ݊ሻ ൌ 2.22 ∙ 10ି଼ ∙ ݊ଶ ൅ 2.2189 ∙ 10ିସ ∙ ݊ ൅ 0.0087																				ሺ20ሻ 
௣ܶ௢௦௧ሺ݊ሻ ൌ 2.6763 ∙ 10ି଼ ∙ ݊ ൅ 1.144 ∙ 10ିସ																																																																																				ሺ21ሻ 

 
 The reason that ஻ܶଷସሺ݊ሻ and ௣ܶ௢௦௧ሺ݊ሻ have non-zero intercepts are related to the fact that the 
computation contains some operations unrelated to the number of nodes.  
 Of course, the forms of all the time functions are dependent of the computation capability. 
However, we expect that the proportions between execution times remain relatively constant on 
different computers.  
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 From the above analysis it can be observed that the biggest execution time is related to linear 
combination for obtaining the vector v (B2) and to the global linear system solving (B34). The 
computation complexity of subphase (B2) is very small and the Matlab code is vectorized in order to 
obtain the smallest execution time. In order to improve the execution time of subphase (B2) some 
advanced computation techniques should be addressed – parallel computing for example – but this 
exceeds our purpose. Also, the subphase (B34) consists of solving the global linear system using the 
Matlab solver for sparse matrices which is a very powerful solver and improving the execution time 
for subphase (B34) will involve the development of a faster solver which exceeds our purpose. That 
being said, we can consider that subphases (B2) and (B34) cannot be further optimized without 
addressing very complex computation techniques and numerical methods and this is the reason we had 
coupled the subphases as (B234). 
 Considering (17-21) and replacing in (16) we obtain: 
 

௦ܶሺ݌, ݊ሻ ൌ 6.2071 ∙ 10ିହ ∙ ݌ ൅ 2.22 ∙ 10ି଼ ∙ ݊ଶ ൅ 2.21916 ∙ 10ିସ ∙ ݊ ൅ 8.8144 ∙ 10ିଷ					ሺ22ሻ 
 
 For our layup optimization purpose some typical values for the number of layers and for the 
number of nodes are p = 30 and n = 500. For these values the total execution time ( ௦ܶ) obtained with 
the testing PC is 0.1272 s. The execution time for the linear combining and global system solving 
( ஻ܶଶଷସ) is 0.1252 s and represents 98.43% from the total execution time ( ௦ܶ) which means that very 
small improvements can be achieved without addressing complex computation techniques. 
 
4. Conclusions 
In this paper we presented a fast and accurate FE model which can be used in the mechanical 
behaviour analysis and layup optimization of the laminated composites. Even the developed model is 
based on the first-order shear deformation theory (FSDT) the strategies used for speeding up the FEA 
of laminated composites easily extend to any two-dimensional theory. 
 The model was validated by comparison with Ansys results and by comparison with some 
theoretical results. 
 The fastness is obtained by organizing the model in three phases: preprocessing, processing and 
post processing. A lot of computations are assigned to the preprocessing phase which is executed only 
once and the smallest amount of operations is assigned to the remaining phases which are executed for 
each layup configuration. We have shown that more than 95% of the total execution time of the 
processing and post processing phases is related to global linear system regeneration (by a low 
complexity linear combination operation) and solving (using the Matlab solver for sparse matrices). 
We consider that any further substantial fastness improvement should address complex computation 
techniques and numerical methods which exceed our purpose. 
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