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Abstract. This paper numerically investigates a two degrees of freedom harmonically excited 

pendulum system, known in the literature to be a good model for the coupling between the roll 

and the pitch ship motions. We concentrate mainly on the dangerous situation for the ship 

where the pitch frequency is almost twice the roll frequency and the excitation period is near 

the pitch period. In this case, although only the pitch excitation is taken into consideration, part 

of the energy in the pitch mode is transferred to the roll mode through the non – linear coupling 

leading to excessive resonant rolling amplitudes and, as a consequence, to ship capsizing. The 

stability of the system is studied using both frequency response curves and bifurcation 

diagrams. It was proven that for small external forcing often co-exist two periodic attractors 

and that the jump phenomena accomplish the transition from one attractor to the other. Periodic 

oscillations take place with the external frequency for pitch mode and half of the external 

frequency for roll mode. Mostly, the transient towards the steady state is slowly, stage in which 

the model behaves chaotically. For moderate and high forcing the system evolves quasi-

periodically or chaotically, especially in the neighbourhood of the jump points and for resonant 

frequencies. The effects of damping on dynamics are also illustrated.  

 

1. Introduction 

A ship has six degrees of free movements in waves: Rolling, pitching, yawing, swaying, surging, and 

heaving. The full equations of motion may be derived either by using Newton’s second principle or by 

means of the Lagrange’s formalism [1 - 3]. Accurate determination of ship - wave - wind dynamical 

interactions leads to a strongly non – linear coupled system with six equations whose analysis is very 

cumbersome and has a computational cost remarkably high.  

    This is the reason why the researchers in the field have proposed low dimensional models which 

may predict the main features of the ship behaviour for certain operational conditions. These models 

have focussed mainly on rolling, pitching and heaving. Roll, which is an oscillatory angular motion of 

the ship about its longitudinal axis, has received much interest because, with a typical hull – form, it is 

the least damped of the six motions. Consequently, the roll angle amplitudes can be large enough to 

affect the ship’s stability and even to capsize it, especially when the wave frequency matches the 

ship’s natural roll frequency [4 - 5]. Pitch, an oscillatory angular motion of the ship about its 

transversal axis, is also important because in heavy sea conditions it can determine the bow to come 

out of the water, then slam it hard in the water, with the immediate consequence of introducing 

enormous efforts in the ship’s structure. Heave, an oscillatory linear motion of the ship in the direction 
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of its vertical axis, is taken into account mainly because it tends to be more closely coupled with the 

pitch mode [6 - 8]. 

    The spring pendulum system is one of the most used two degrees of freedom dynamical system 

simulating the coupled pitch – roll ship motion. It has a very complex behaviour including jump 

phenomena, Hopf bifurcations, multiple regular attractors with fractal boundaries, or chaotic responses 

and boundary crises [9 - 11]. 

    In this contribution, we perform an extended numerical investigation of the above – mentioned 

model for pitch and roll ship motions. We focus mainly on the dangerous situation for the ship where 

the pitch frequency is almost twice the roll frequency and the excitation period is near the pitch period. 

In this case, part of the energy in the pitch mode is transferred to the roll mode through the non – 

linear coupling leading to excessive resonant rolling amplitudes. 

2. Short description of the ship model 

The mechanical model used in the paper consists in a mass attached to the end of a massless linear 

spring which may rotate in a plane like a pendulum. The system is much more complex than a simple 

pendulum, as the spring adds a second degree of freedom. The spring and the pendulum motions 

simulate the pitch and roll modes, respectively. 

    For brevity, we refer to some existing papers on this ship model for the equations of motion. They 

are written in non-dimensional form as follows 
 

                                       tfxxxcx 

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where x and   represent the spring extensional and pendulum angular displacements, 2,1, ic
i , are 

the linear damping coefficients, 2,1, i
i

 , the natural frequencies of the spring and pendulum 

modes, 2,1, if
i , the forcing amplitudes, and   the excitation (encounter) frequency. Finally, the 

dots denote the differentiation with respect to the non-dimensional time. These equations have been 

studied with the method of multiple scales in the neighbourhood of the static equilibrium by assuming 

that the damping coefficients and the forcing amplitudes are on the order of 
2 , with 10   a 

small parameter, while the involved frequencies are on the order of unity. Multiple regular or chaotic 

attractors with fractal boundaries between them may co-exist for some parameters values and the high-

order approximations give better results than the first-order approximation [10, 11]. 

    In the next section, we numerically investigate mainly the response of the system (1) in the 

proximity of the internal resonance 21
2   and external resonance 1

 .  

3. Numerical results 

In this section the ship equations (1) are numerically analysed with Runge – Kutta of fourth order 

method to determine the pitch and roll amplitudes for certain values of different model parameters. 

The system (1) exhibits a long transition towards the steady stare response, thus we have integrated it 

for T = 3000 u.t. and used the last tenth of this time interval to compute the amplitudes. For non-

periodic motions, by amplitudes we have understood the maximum value of the response in the above-

mentioned time period. Our study is focussed only on the spring mode excitation such that the values 

02f  and 11  will be maintained unchanged throughout the paper.  

    Figure 1 shows the steady state amplitudes 2,1, ia
i , of the pitch and roll modes as a function of 

the roll natural frequency 2
  for different forcing amplitudes 1

f . The other parameters were selected 

to be 005.0
21
 cc and 04.1 . The black and red dots correspond to initial 
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conditions    02.0,1.0,04.0,2.0)0(,0),0(),0( 






 

xx , while the black and red circles describe 

the system behaviour for    02.0,03.0,04.0,02.0)0(,0),0(),0( 






 

xx . It is observed from 

figure 1a that for small 1
f  and 45.0

2
  there co – exist at least two regular attractors. For 

example, if 46.0
2
 , the stable attractors are characterized by 0

2
a  and 0.2785. As 1

f  increases, 

the basin of attraction for the first attractor diminishes (see figure 2). 
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Figure 1. Pitch and roll amplitudes as a function of the roll natural frequency, for parameters values 

005.0
21
 cc , 02f , 11 , 04.1  and:  

a) 004.0
1
f ; b) 006.0

1
f ; c) 008.0

1
f ; d) 02.0

1
f . 
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Figure 2. Basin of attraction for two periodic attractors obtained for parameters values 

005.0
21
 cc , 02f , 11 , 46.0

2
 , 04.1  and:  

a) 002.01f ; b) 004.01f ; c) 008.0
1
f . Yellow (light) colour stands for solution with 0

2
a . 
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   Figure 1a displays too an obvious jump between the two steady state responses determined by Lee 

and Park with multiple scales method [10]. This jump moves toward lower values of 2
  as the force 

amplitude 1
f  increases. It is worth noting also that the roll amplitudes have higher values to those of 

pitch mode, meaning that an important part of the energy introduced into the system in the pitch mode 

is transferred to the roll mode. Starting with 006.0
1
f , another event comes into play: the 

appearance of quasi-periodic and chaotic dynamics. First it appears at the right border between the two 

sets of steady states but, for larger 1
f , it affects other and other ranges for 2

 , as illustrated in figure 

1d. The amplitudes 2,1, ia
i  corresponding to these behaviours are significantly larger than those 

for periodic motions, with immediate consequences on the stability and safety of the ship. Three 

different types of behaviours, obtained for the system’s parameters used above, are reported in figures 

3 to 5, after the transients die out. They represent a periodic oscillation (figure 3), a very slowly 

decreasing beating motion (figure 4) or a chaotic dynamics (figure 5). 
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Figure 3. An example of periodic response of the system (1) at small amplitude of excitation and 

selected parameters 005.0
21
 cc , 11 , 51.0

2
 , 04.1 , 004.0

1
f , 0

2
f . 

a) pitch mode; b) roll mode. 
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Figure 4. An example of beating motion of the system (1) at moderate amplitude of excitation and 

selected parameters 005.0
21
 cc , 11 , 54.0

2
 , 04.1 , 008.0

1
f , 0

2
f . 

a) pitch mode; b) roll mode. 
 

 

    The next simulation results aim at the effect of external frequency on the pitch and roll amplitudes. 

Figure 6 shows the bifurcation response curves of system (1) for an extended range of excitation 

frequency   and different forcing amplitudes 1
f . The plots contain the numerical results for the 

same initial conditions as those used in figure 1. From figure 6a, it is observed that both curves possess 

two jumps and a minimum. Also, it is noteworthy that a change in the initial conditions may shift the 

amplitudes from small to large values for certain . 
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Figure 5. An example of chaotic response of the system (1) at large amplitude of excitation and 

selected parameters 005.0
21
 cc , 11 , 47.0

2
 , 04.1 , 02.0

1
f , 0

2
f . 

a) pitch mode; b) roll mode. 
 

   Again, as 1
f  increases, the basin of attraction for the steady motions with small and null amplitudes 

diminishes continuously until its disappearance and the two jumps move farther with respect to the 

resonance location 1 . Finally, note that even for small forcing 1
f  in the nearness of 1  the 

system’s behaviour is far to be periodic. For moderate and large forcing amplitudes there exist many 

regions where the solutions are bounded but not periodic (see panels 6c and 6d). Here, the maxima for 

pitch and roll angles are larger enough to present a real risk for the ship stability. New types of chaotic 

motions are detected, including that shown in figure 7. The integration time was increased at 20000 

u.t, but no sign of regularity was recognized. 
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Figure 6. Pitch and roll amplitudes as a function of the external frequency, for parameters 

values 005.0
21
 cc , 02f , 11 , 51.0

2
  and:  

a) 001.0
1
f ; b) 003.0

1
f ; c) 006.0

1
f ; d) 02.0

1
f . 
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Figure 7. Chaotic response of the system (1) for the selected parameters 005.0
21
 cc , 11 , 

51.0
2
 , 007.1 , 02.0

1
f , 0

2
f : a) pitch mode; b) roll mode. 

 

    The analytical solutions derived in [10] suggest that the periodic oscillations for the pitch and roll 

modes are characterized by the frequencies   and  / 2. To check this, the bifurcation diagrams of x 

and   versus 1
f  have been plotted. The sampled time was chosen to be the forcing period /2 . 

The results displayed in figure 8 confirm, on the one hand, that for low excitation the system behaves 

periodically as Lee and Park stated [10] and, on the other hand, for strong excitation the system 

oscillates chaotically or quasi-periodically with large amplitudes. 
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Figure 8. Bifurcation diagrams x - 1
f  and 1

f  for selected parameters 005.0
21
 cc , 

11 , 51.0
2
 , 96.0 and 0

2
f . 

 

    In order to examine the effects of other important parameters, in the third stage of simulations we 

have determined the amplitudes of oscillations for various damping coefficients. Figure 9 presents 

some of our findings. Thus, for fixed parameters excepting 1
c , the system may evolve periodically 

with amplitudes almost independent on 1
c  and proportional to 1f  (see figure 9a) or may exhibit a 

complex behaviour including jumps in the amplitudes’ values and a high concentration of chaotic 

motions for large forcing 1f  (see figures 9b and 9c). In principle, for low damping and high 

excitation we may expect to chaotic oscillations. 

   The last set of numerical investigations have concerned the ship model’s dynamics if only one of the 

resonant conditions 21
2   and 1

  is fulfilled. Thus, figure 10 illustrates the frequency-

amplitude curves for 1.1 . As seen in the figure, for the same values of the other parameters, the 

steady-state solution with 02a  covers a larger range of 2  frequencies when compared with the 

case 1
  (see also figure 1). 
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Figure 9. The influence of damping on roll amplitudes for system (1) with 11 , 11 , 0
2
f  

and different forcing 1f  

a) 02.1 , 003.02c ; b) 96.0 , 003.02c ; c) 96.0 , 03.02c . 
 

    Chaotic motions are still possible but they require high levels of forcing or small damping. 

Moreover, x and   maxima for the non-periodic responses are not so scattered as for external resonant 

conditions ( 1
 ). If the external frequency   is taken far away from 1 , then the solution with 

constant amplitudes 2,1, ia
i , prevails on the entire range of natural roll frequencies used in figure 

10. 
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Figure 10. Pitch and roll amplitudes as a function of the roll natural frequency, for parameters values, 

02f , 11 , 1.1  and:  

a) 005.0
21
 cc , 008.0

1
f ; b) 005.0

21
 cc , 02.0

1
f ; c) 002.021  cc , 02.0

1
f . 

 

    The other studied case is for 21 2  . In this situation, as shown in figure 11, the roll mode is 

excited only for moderate and large forcing 1f  and just in the proximity of 1 . 
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Figure 11. Pitch and roll amplitudes as a function of the external frequency, for parameters values 

005.0
21
 cc , 02f , 11 , 4.02  and:  

a) 001.0
1
f ; b) 003.0

1
f ; c) 01.01f . 
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4. Conclusions 

The nonlinear responses of two degrees of freedom model for pitch and roll ship motions have been 

studied numerically for the particular case in which only the pitch mode is excited. The effort was 

focussed mainly on the simultaneous resonance case where the pitch frequency is almost twice the roll 

frequency and the external excitation period is near the pitch period, but some attention was given to 

the situations where only one of these conditions is fulfilled. 

    From the study the following may be concluded: 

-For small forcing there co-exist two periodic attractors for many combinations of system’s 

parameters. This was proven by plotting the frequency response curves and determining the basins of 

attraction for a given set of initial conditions. Jump phenomena accompany the transition from one 

attractor to another; 

-Periodic oscillations take place with the external frequency for pitch mode and half of external 

frequency for roll mode. In many cases the roll amplitudes are much larger than the pitch ones, 

meaning that an important part of the energy introduced in the system in the pitch mode is transferred 

to the roll mode; 

-The non-zero steady state amplitudes seem to be monotonic increasing functions in the forcing 

amplitude; 

-For moderate and high forcing the periodic behaviour is replaced by quasi-periodic or chaotic 

dynamics, mainly in the proximity of the jump points or resonant frequencies. The maxima for roll and 

pitch amplitudes become extremely dangerous for ship stability; 

-By decreasing the damping in the system, the probability of non-periodic solutions gets higher; 

-The transient towards the steady sate solutions is lengthy. The system behaves chaotically during this 

stage. 

Our numerical results are in good agreement with the available published analytical studies. 
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